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Unter "druckhaftem Gebirge" versteht man das Pha&nomen von grossen und oft
zeitabhangigen Verformungen, die beim Vortrieb durch Gebirge kleiner Steifigkeit und
Festigkeit entstehen. Die Intensitat der Gebirgsverformung in einer druckhaften Strecke ist
in der Regel stark veranderlich. Trotz gleichbleibender Ausbruchsicherung,
Uberlagerungshohe und lithologischer Zusammensetzung lassen sich haufig auf kurzer
Distanz betrachtliche Anderungen der Konvergenzen feststellen. So lange die Griinde fiir
diese Variabilitat nicht bekannt sind, sind zuverldssige Voraussagen des
Gebirgsverhaltens beim Vortrieb schwierig. Letztere sind aber wichtig, um die
Sicherungsmittel und den Ausbruchsquerschnitt zu bestimmen und damit kostspielige und
aufwandige Nachprofilierungsarbeiten zu vermeiden. Die Variabilitat der Druckhaftigkeit ist
eine der Hauptursachen fiir Riickschlage, die selbst hochqualifizierte Ingenieure in einigen
Fallen erfahren kdnnen.

Fir eine gegebene Uberlagerung und Ausbruchmethode ist bekannt, dass die
Gebirgsverformungen von den mechanischen Eigenschaften des Gebirges, von der
Raumstellung der Schichtung oder Schieferung, vom Primarspannungszustand und vom
Porenwasserdruck abhangen. Es liegt daher auf der Hand, dass die Grinde fir die
Wechselhaftigkeit der Druckhaftigkeit beim Vortrieb in der Wechselhaftigkeit dieser
Einflussfaktoren entlang des Tunnels liegen mussen. Trotz der intensiven Forschung der
letzten Jahre zum Thema "druckhaften Gebirge" ist nach wie vor nicht bekannt, inwieweit
diese Faktoren das Gebirgsverhalten nach dem Tunnelausbruch beeinflussen und wie sie
bei der Planung berlicksichtigt werden kénnen, insbesondere dann, wenn sie entlang des
Tunnels stark veranderlich sind. Dies ist zum Beispiel der Fall bei einem Vortrieb durch
eine Wechsellagerung von starken und schwachen Schichten oder durch gefaltetes
Gebirge.

Ziel des vorliegenden Forschungsberichtes ist es daher, die Sicherheit und die
Wirtschaftlichkeit des Tunnelbaus in druckhaftem Gebirge zu erhdhen, das Verstandnis der
Variabilitét der Druckhaftigkeit zu verbessern und die damit verbundenen Erfahrungen aus
dem AlpTransit-Projekt der Ingenieurgemeinschaft zuganglich zu machen. Um dieses Ziel
zu erreichen, ist es erforderlich, (i), die Faktoren, die fir die Variabilitat der Druckhaftigkeit
verantwortlich sind, zu identifizieren und, (i), den Einfluss dieser Faktoren zu
quantifizieren, um sie wahrend des Tunnelbaus fiir die rechtzeitige Identifizierung und
Vorhersage des Gebirgsverhaltens zu verwenden.

Um diese Ziele zu erreichen, werden die Daten aus dem Gotthard-, Ceneri- und
Loétschberg-Basistunnel qualitativ und empirisch untersucht, numerische Berechnungen
zur quantitativen Untersuchung des Einflusses der Faktoren durchgefihrt und
Entscheidungshilfen fir die Planung, Bemessung und den Bau von Tunnels entwickelt.
Besonderes Augenmerk wird auf Faktoren gelegt, die die Konvergenzen sensitiv
beeinflussen, d.h. deren Schwankungen — auch wenn sie relativ klein sind — eine
signifikante Wechselhaftigkeit des makroskopisch beobachteten Verhaltens verursachen
kénnen. Daher konzentriert sich dieses Forschungsprojekt auf die Variabilitdt der
Druckhaftigkeit infolge der Heterogenitat des Baugrunds in Bezug auf seine mechanischen
Eigenschaften (in verschiedenen Massstaben) sowie die Variation der Raumstellung der
Anisotropieebenen (Schichtung, Schieferung). In diesem Forschungsprojekt wird die
zeitliche Abhangigkeit des Gebirgsverhaltens (durch Konsolidierung) nicht bertcksichtigt.
Darliber hinaus ist bekannt, dass der Primarspannungszustand die Intensitat der
Druckhaftigkeit beeinflussen kann: Wenn der primare Spannungszustand entlang des
Tunnels variiert, wie es bei intensiv gefalteten Gesteinen oder in Stérungszonen der Fall
sein kann, kann die Intensitat der Druckhaftigkeit variabel sein. Der Effekt der Variabilitat
der in-situ Spannungen wird in diesem Forschungsprojekt nicht untersucht.

Kapitel 2 analysiert die Beobachtungen beim Bau der drei AlpTransit-Basistunnels. Konkret
gibt dieses Kapitel einen knappen Uberblick liber die verfiigbaren Daten zur Geologie, zum
Ausbruch und zur Sicherung sowie zum Gebirgsverhalten nach dem Vortrieb von
verschiedenen Abschnitten des Gotthard- (Abschnitt 2.1), Ceneri- (Abschnitt 2.2) und
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Ldétschberg-Basistunnel (Abschnitt 2.3) und identifiziert die Faktoren, die fur die Intensitat
und Variabilitdt der Druckhaftigkeit verantwortlich waren. Der Einfluss dieser Faktoren wird
diskutiert und es werden empirische Korrelationen bestimmt, die es ermdglichen, die
Vorhersagen der durch den Tunnelbau entstandenen Verformungen zu verbessern.

Die Fallbeispiele der Gotthard-, Ceneri und L6étschberg-Basistunnels (Kapitel 2) konnten
zeigen, dass die Gebirgsverformungen hauptsachlich von der Lithologie, von der
Orientierung der Schieferung und den Einfluss von benachbarten schwacheren oder
starkeren Zonen beeinflusst wurden. Diese — wenn auch relativ kleine — Schwankungen
kénnen daher zu einer signifikanten Variabilitat der Intensitat der Druckhaftigkeit entlang
des Tunnels flihren, die zusatzlich mit einer ausgepragten Ungleichmassigkeit der
Verformungen im Tunnelprofil einhergehen kann. Abschnitt 2.1 konnte zeigen, dass der
Einfluss der Raumstellung der Schieferung auf die Tunnelkonvergenzen durch eine
einfache, empirisch nachgewiesene (und spater — im Kapitel 5 — auch theoretisch
begriindete) Gleichung bestimmt werden kann, die in Kombination mit Vorauserkundungen
eine zuverlassige Vorhersage der Konvergenzen ermdglicht. Daher wurde in den nachsten
Kapiteln dieses Forschungsberichts der Einfluss der oben genannten Faktoren ermittelt,
um sie als Indikatoren wahrend der Bauzeit fir die rechtzeitige Identifizierung und
Vorhersage des Gebirgsverhaltens zu nutzen. Dartber hinaus zeigte die Karbon Zone des
Lotschberg-Basistunnel, dass erhebliche Langzeitverformungen aufgetreten sind, die unter
anderem auf das Kriechen zuriickzufiihren sind. Auffallig war, dass bei grésseren
(kurzfristigen) Verformungen (definiert als die Verformungen, die innerhalb von ca. 50 m
hinter der Ortsbrust auftreten) gréssere langfristige Verformungen durch das Kriechen
auftraten. Daher beeinflusst das Kriechen die Intensitat der Druckhaftigkeit entlang des
Tunnels.

Der theoretische Hintergrund dieser Beobachtungen ist in den Kapiteln 3 bis 5 des
Berichtes enthalten, welche die Intensitat der Druckhaftigkeit im Tunnelbau durch eine
Wechsellagerung von schwachen und starkeren Gesteinen oder durch gefaltete Gesteine
mittels analytischer Methoden oder numerischer Berechnungen untersuchen. Fur die
Analyse des Tunnelvortriebs durch eine Wechsellagerung von schwachen und starkeren
Schichten werden drei Falle hinsichtlich der Orientierung der Schichten (zur Tunnelachse)
unterschieden: (a) senkrecht, (b) parallel oder (c) mit einer beliebigen Ausrichtung zur
Tunnelachse. Im ersten Fall kann die Intensitat der Druckhaftigkeit in Abhangigkeit der
Schichtdicke zum Tunnelradius — d.h. in Abhangigkeit der mechanischen Heterogenitat des
Baugrunds — sehr unterschiedlich sein. Im zweiten Fall ist die Intensitat der Druckhaftigkeit
entlang der Tunnelachse konstant, aber die Verformungen sind nicht gleichmassig entlang
des Tunnelprofils verteilt. Wie beim Bau des Gotthard- und des Ceneri-Basistunnel
beobachtet wurde, kénnen diese beiden geotechnischen Situationen in der Realitat effektiv
auftreten und sind daher von besonderer praktischer Bedeutung. Natirlich kann eine
solche Abfolge von harten und schwachen Schichten in Wirklichkeit durch
Ubergangszonen gekennzeichnet sein. Dennoch konzentriert sich dieses
Forschungsprojekt aus Griinden der Einfachheit auf eine Wechsellagerung von nur einem
starken und einem schwachen Material.

Die Kapitel 3 und 4 betreffen die Gebirgsverformungen in Querschnitten weit hinter der
Ortsbrust. Diese sind grésser als die Konvergenzen des ausgebrochenen Profils, da sie
die vor der Ortsbrust auftretenden Verformungen (sogenannte "Vorverformungen")
beinhalten. Wie in den Kapiteln 3 und 4 dargestellt, kdnnen die Vorverformungen (und
damit auch die Konvergenzen des ausgebrochenen Tunnelprofils) mit den bekannten
Verfahren flr isotrope, elasto-plastische Materialien berechnet werden.

Kapitel 3 untersucht die durch den Tunnelausbruch verursachten Verformungen beim
Tunnelbau senkrecht zu den Schichten. Ist die Wechsellagerung in Bezug zum
Tunneldurchmesser dick, so kann die Druckhaftigkeit sehr wechselhaft Iangs des Tunnels
sein, wie dies beispielsweise beim Teilabschnitt Sedrun des Gotthard-Basistunnels
beobachtet wurde. Besteht die Formation jedoch aus sehr diinnen, abwechselnden
schwachen und starkeren Gesteinsschichten, ist die Verformungsverteilung entlang der
Tunnelachse praktisch gleichmassig. Das bedeutet, dass anstatt ein heterogenes Modell
zu betrachten und somit die einzelnen Schichten numerisch zu modellieren — was in Bezug
auf raumliche Diskretisierung und Rechenzeit anspruchsvoll ware — das Gebirge als ein
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homogenes, transversal isotropes Modell betrachtet werden kann. Fir diesen Sonderfall
prasentiert der Abschnitt 3.2 eine analytische Lésung fir die Gebirgskennlinie (GKL; d.h.
die Beziehung zwischen der radialen Verschiebung am Ausbruchsrand und dem
Ausbauwiderstand) unter Verwendung der Homogenisierungstechnik und unter der
Annahme von Rotationssymmetrie, ebenem Verformungszustand, ideal plastischem
Verhalten fir die schwachen Schichten und entweder ideal plastischem oder sprodem
Verhalten (mit Entfestigung) fir die harten Schichten. Die Herleitung dieser
Gebirgskennlinie ist mathematisch anspruchsvoll, da eine Vielzahl von Fallen hinsichtlich
des Versagenszustands des Gesteins berlicksichtigt werden miussen (plastisches
und/oder elastisches Verhalten der schwachen und/oder harten Schichten unter
Berlcksichtigung eines plastischen Fliessens im Tunnelquerschnitt oder auch senkrecht
dazu). Diese analytische Losung ist aus praktischen Griinden besonders wichtig, da die
numerische Modellierung einer engen Abfolge von harten und schwachen Gesteinen sehr
zeitaufwandig ist. Numerische Berechnungen in Abschnitt 3.4, die die Schichten diskret
betrachten, zeigen, dass die zuvor genannte analytisch abgeleitete Losung fir praktische
Zwecke ausreichend genau ist, wenn die Dicke der harten Schichten weniger als etwa 5%
des Tunnelradius betragt.

Das Verhalten des betrachteten, homogenisierten Materials nach dem Tunnelausbruch ist
isotrop (da der Ausbruchrand eine gleichmassige radiale Verschiebung aufweist). Dies
deutet darauf hin, dass es moglich sein kdnnte, das Gebirge als isotropes und homogenes
Material mit mechanischen Parametern zu betrachten, die von den Parametern und den
Anteilen der schwachen und harten Schichten abhangen. Der Abschnitt 3.3 geht dieser
Idee auf den Grund und bestimmt die aquivalenten Parameter (Elastizitdtsmodul Eeq,
Poissonzahl veq, Reibungswinkel ¢eq, Kohasion ceq und Dilatanzwinkel weq) eines isotropen
homogenen Gebirges in Abhéngigkeit der Eigenschaften und Anteile der schwachen und
der harten Schichten. Die Parameter eines mechanisch &quivalenten homogenen,
isotropen und elasto-plastischen Materials werden bestimmt und in Abschnitt 3.3
dargestellt. Dies ist flir Bemessungszwecke sehr nitzlich, da es den Einsatz gangiger
Berechnungsmethoden und -programmen zur L6sung von Problemen ermdglicht, die nicht
den Bedingungen der Rotationssymmetrie oder dem ebenen Verformungszustand
entsprechen, und dies auch fiir diinnbankiges Gebirge. Damit kann man beispielsweise mit
den ermittelten aquivalenten Parametern einfach die Wirksamkeit eines Ausbausystems
im Tunnelbau mittels Tunnelbohrmaschine bestimmen.

Die Ergebnisse der Abschnitte 3.2 und 3.3 gelten flr eine Wechsellagerung aus
schwachen und starkeren Schichten, die (bezogen auf den Tunnelradius) so dinn sind,
dass das Gebirge im Massstab des Tunnelquerschnitts als homogen angesehen werden
kann. Andernfalls, wenn die Schichten dicker sind und damit die Annahme eines
homogenisierten Modells nicht gerechtfertigt ist, miissen nach dem derzeitigen Stand der
Forschung numerische Berechnungen durchgefiihrt werden, bei denen die schwachen und
die starkeren Schichten diskret modelliert werden missen. Der Abschnitt 3.4 zeigt jedoch,
dass die Verformungen in den schwachen Zonen mit Hilfe einer einfachen Gleichung
abgeschatzt werden konnen, die den stabilisierenden Einfluss der benachbarten harten
Schichten berticksichtigt. Die Gleichung aus Abschnitt 3.4 ermdéglicht es die Intensitat der
Druckhaftigkeit fir alle Schichtdicken schnell und einfach zu bestimmen, ohne dass eine
numerische Modellierung erforderlich ist (zumindest nicht im Rahmen eines Vorprojekts).
Durch eine umfassende Parameterstudie konnte gezeigt werden, dass diese Gleichung fur
praktische Zwecke ausreichend genau ist.

In Kapitel 4 werden die vortriebsbedingten Tunnelverformungen in geschichteten Baugrund
untersucht, die aus einer Wechsellagerung aus schwachen und starkeren Schichten
bestehen, die parallel zur Tunnelachse orientiert sind. Wenn die Schichten sehr dick sind
und ihre Grenzflache in grossen Abstand zum Tunnel liegt, dann sind die Verformungen
des Tunnelprofils natlrlich praktisch gleichmassig und die Heterogenitat des Baugrunds
kann vernachlassigt werden. Andernfalls sind die Gebirgsverformungen entlang des
Tunnelprofils nicht gleichmassig verteilt, auch wenn die Schichten sehr diinn sind.

Der Vortrieb durch dinne, alternierende schwache und harte Schichten, die parallel zur

Tunnelachse auftreten, kann unter Berlicksichtigung eines homogenen und transversal
isotropen Mediums analog zu Abschnitt 3.2 analysiert werden (Abschnitt 4.2). Im
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Gegensatz aber zu Abschnitt 3.2 sind die Bedingungen der Rotationssymmetrie jedoch
nicht mehr erflllt und daher muss dieses Randwertproblem numerisch geldst werden.
Daher wurde das Materialmodell von Abschnitt 4.2 fir allgemeine 3D-Spannungs- und
Dehnungszustéande (mittels Homogenisierungstechnik) formuliert und in Abaqus
implementiert. Die elasto-plastischen Parameter dieses homogenen und transversal
isotropen Mediums hangen von den Anteilen sowie den Festigkeits- und
Steifigkeitseigenschaften der Schichten der Wechsellagerung ab. Damit kann das
Gebirgsverhalten beim Tunnelbau durch diinne, alternierende schwache und starkere
Schichten rechnerisch untersucht werden (unter der Annahme vom ebenen
Verformungszustand).

Mit Hilfe dieses Modells wurde eine umfassende parametrische Studie durchgefiihrt, die
ein breites Spektrum geotechnischer Parameter abdeckt. Da die homogenisierte Lésung
aus praktischen Griinden besonders wichtig ist (die numerische Modellierung einer engen
Abfolge von schwachen und starkeren Gesteinen ist sehr zeitaufwandig), wird die
Abschatzung der Verschiebungen entlang des Tunnelprofils fiir gegebene geotechnische
Bedingungen durch dimensionslose Diagramme — dargestellt in Abschnitt 4.2 — erleichtert,
die ein wertvolles Werkzeug fiir die Ingenieurpraxis darstellen, da sie es ermdglichen, die
Maximal- und Minimalverschiebungen im Tunnelprofil flir ein breites Spektrum
geotechnischer Bedingungen zu bestimmen. Auch wenn das Verhalten des Gebirges in
diesem Fall anisotrop ist, ermdglichen diese Diagramme analog zu Abschnitt 3.3 die
Bestimmung der Parameter fir ein isotropes homogenes Material, welches dem eigentlich
anisotropen Gebirge in dem Sinne entspricht, dass seine durch den Tunnelbau induzierte
Verschiebungen entweder dem Maximum oder dem Minimum der Verschiebungen des
anisotropen Gebirges entsprechen. Wie in Abschnitt 4.2.5 gezeigt, ermdglicht die
Verwendung dieses aquivalenten isotropen Modells das Auffinden einer oberen und einer
unteren Grenze der Verschiebungen bei komplexeren Problemen (die nicht die Bedingung
des ebenen Verformungszustands erfillen).

Schliesslich untersucht Abschnitt 4.3 die Angemessenheit und die Grenzen der
Homogenisierung eines geschichteten Gebirges und den Einfluss der Schichtdicke: Die
numerischen Berechnungen, die den Einfluss der Schichtdicke durch diskrete Betrachtung
der einzelnen Schichten analysieren, konnten zeigen, dass das zuvor genannte
homogenisierte Modell fir die Praxis hinreichend genau ist, wenn die Dicke der harten
Schichten weniger als etwa 5% des Tunnelradius betragt. Da dieses Kriterium auch fur
eine Folgen von alternierenden Schichten gilt, die senkrecht zur Tunnelachse liegen, gilt
dieses Kriterium fur eine beliebige Orientierung der Schichten zur Tunnelachse. Daruber
hinaus konnte Abschnitt 4.3 zeigen, dass bei sehr dicken Formationen die
Ungleichmassigkeit der Verformungen im Profil nahezu verschwindet, wenn die schwache
und die hartere Formation in einem Abstand von mindestens dem Finffachen des
Tunnelradius zur Tunnelachse liegt, so dass die schwache oder die harte Formation bei
der Bemessung vernachladssigt werden kann. Daher mussen keine numerischen
Berechnungen durchgefiihrt werden (zumindest nicht im Rahmen eines Vorprojekts).

Abschnitt 4.4 beschaftigt sich mit dem Fall eines Vortriebs durch geschiefertes Gebirge,
wobei die Schieferungsflachen parallel zur Tunnelachse verlaufen. Der Grund fir die
Berticksichtigung der Schieferung in Kapitel 4 (welches sich eigentlich mit geschichteten
Gebirgsmassen befasst) ist, dass das Verhalten des geschieferten Gesteins nach dem
Tunnelausbruch gewisse Ahnlichkeiten mit der eines geschichteten Gebirges aufweist: Ein
geschiefertes Gestein kann aus kontinuumsmechanischer Sicht als Grenzfall eines
dinnbankigen Gebirges betrachtet werden. Die Schieferung spielt keine Rolle fiir einen
Tunnelvortrieb senkrecht hierzu, hat aber einen ausgepragten Einfluss auf die
Verformungen, wenn sie parallel zur Tunnelachse verlauft.

Da das implementierte Materialmodell fir (dinn) geschichtete Gesteine rechnerisch
ineffizient ist fir den Grenzfall der Schieferung, wurde in Abschnitt 4.4, ein Materialmodell
speziell fir geschieferte Gesteine formuliert und implementiert. Damit konnten in Abschnitt
4.4 numerische Berechnungen (unter der Annahme vom ebenen Verformungszustand)
durchgefiihrt werden, die zeigten, dass die Schieferung die Gesteinsverformungen negativ
beeinflussen kann, insbesondere wenn ihre Kohasion und ihr Reibungswinkel klein sind.
Ist zudem die einachsige Druckfestigkeit der Matrix gering, kénnen die
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Gebirgsverformungen wesentlich hdher sein als bei nicht-geschieferten Gesteinen. Um
den Einfluss der Schieferung besser abschatzen zu kdénnen, wurden in Abschnitt 4.4
dimensionslose Diagramme entwickelt und dargestellt, die es ermdglichen, die maximalen
und minimalen Verformungen im Tunnelprofii bei gegebenen geotechnischen
Bedingungen einfach abzuschatzen.

Das Kapitel 5 betrachtet den Tunnelbau durch diinn geschichtete oder geschieferte
Gesteine mit einer beliebigen Ausrichtung der Anisotropieebenen in Bezug zur
Tunnelachse. Zunachst wird in Abschnitt 5.1 der relativ einfache Fall einer konstanten
Ausrichtung der Anisotropieebenen entlang des Tunnels betrachtet, wobei besonderes
Augenmerk auf die Wirkung des Fallwinkels und der Streichrichtung der Anisotropeebenen
relativ zur Tunnelachse auf die Vorverformungen und damit auf die Verformungen des
Tunnelausbruchprofils ("Konvergenzen") gelegt wird. Da die unter der Annahme vom
ebenen Verformungszustand (wie in den Kapiteln 3 and 4) ermittelten Verformungen die
vor der Ortsbrust auftretenden Verformungen (sogenannte "Vorverformungen") beinhalten
und damit wesentlich grésser sind als die Konvergenzen des ausgebrochenen
Tunnelprofils, wird in Abschnitt 5.1 der Einfluss der Anisotropieebenen auf die
Konvergenzen mit Hilfe von raumlichen Berechnungsmodellen mit beliebiger Orientierung
der Anisotropieebenen zur Tunnelachse untersucht. Dieser Abschnitt konnte zum einen
zeigen, dass es relevante Unterschiede zum bekannten Fall eines isotropen Gebirges gibt
und zum anderen, dass die numerischen Berechnungen den empirisch ermittelten
Zusammenhang zwischen Konvergenz und Raumstellung der Schieferung unter
Berucksichtigung des sogenannten "Einflussfaktors der Schieferung" (der den Fallwinkel
und die Streichrichtung der Anisotropieebenen zur Tunnelachse kombiniert) — welcher auf
der Grundlage der Daten aus dem Gotthard- Basistunnel entwickelt wurde — gut
reproduzierten (vgl. Abschnitt 2.1). Basierend auf dieser Beziehung wurde eine einfache
Gleichung entwickelt, die fur die meisten Tunnelbauprobleme ausreichend genau ist und
es ermoglicht, die Konvergenz fiir eine beliebige Raumstellung der Anisotropieebenen zur
Tunnelachse unter Berlicksichtigung des Einflussfaktors der Schieferung zu berechnen.
Mit dieser Gleichung missen fir einen Tunnelvortrieb durch geschieferte oder
geschichtete Gebirgsmassen keine aufwandigen raumlich-numerischen Analysen zur
Abschatzung der Tunnelkonvergenzen durchgeflihrt werden (zumindest nicht in den
Vorphasen eines Tunnelprojektes).

Anschliessend analysiert der Abschnitt 5.2 den Fall eines Vortriebs durch gefaltete
Gebirgsformationen, bei denen die Orientierung der Anisotropieebenen und damit die
Intensitdt der Druckhaftigkeit entlang der Tunnelachse variieren. Eine vereinfachte,
gefaltete Gebirgsstruktur mit einer sinusférmigen Form der Anisotropieebenen wird dabei
numerisch berucksichtigt. Die Faltung wird direkt im Materialmodell numerisch
berucksichtigt, indem berucksichtigt wird, dass der Normalenvektor der Anisotropieebene
positionsabhangig ist. Die numerischen Ergebnisse zeigen, dass die Variation der
Ausrichtung der Anisotropieebenen in der Tat ein wichtiger Faktor fir die Variabilitat der
Druckhaftigkeit ist und dies beim Tunnelbau durch geschieferte sowie geschichtete
Gesteine. Die Ergebnisse der numerischen Untersuchungen zeigen, dass es eine
gegenseitige Beeinflussung der wechselnden Bereiche der glinstigen und unglinstigen
Neigung der Anisotropieebenen entlang des Tunnels gibt. Trotz dieser gegenseitigen
Beeinflussung fuhrt die Faltung jedoch zu einer erheblichen Variabilitdt der
Gesteinsverformungen entlang des Tunnels.

Schliesslich wird im Abschnitt 5.2.5 das Fallbeispiel des Teilabschnitts Sedrun des
Gotthard Basistunnels nochmals aufgegriffen und der theoretische Hintergrund fir den in
Abschnitt 2.1 vorgestellten Einflussfaktor der Schieferung dargestellt. In diesem Abschnitt
konnte gezeigt werden, dass (i) die im Teilabschnitt Sedrun des Gotthard-Basistunnels
beobachtete Variabilitdt der Druckhaftigkeit mit Hilfe numerischer Berechnungen unter
Berucksichtigung der Orientierung der Schieferung zur Tunnelachse gut nachvollzogen
werden kann und (i) dass der Einflussfaktor der Schieferung als zuverlassiger Indikator fiir
die Abschatzung der Intensitat der Druckhaftigkeit wahrend dem Vortrieb in Kombination
mit Vorauserkundungen verwendet werden kann.

In diesem Forschungsprojekt wurde die zeitliche Abhangigkeit des Gebirgsverhaltens
infolge Konsolidation nicht bertcksichtigt. Das Vorhandensein von Grundwasser oder
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hohem Porenwasserdruck beglnstigt die Entwicklung von Gesteinsverformungen. In
einem gesattigten Gestein bestimmt die Durchldssigkeit des Baugrunds die
Geschwindigkeit der Verformungen, die mit dem Abbau von Ubermassigen
Porenwasserdriicken verbunden sind. Schwankungen der Durchlassigkeiten kénnen
daher zu variablen Intensitaten der Druckhaftigkeit fihren. Insbesondere diinne,
durchldssige Zwischenschichten kdnnen eine erhebliche Beschleunigung der
Verformungen bewirken, da sie zu einer Verkirzung der Entwasserungswege flihren.
Diese Hypothese wurde bisher nicht quantitativ untersucht. Daher sollte der Einfluss der
Heterogenitaten des Baugrunds in Bezug auf seine hydraulischen Eigenschaften auf die
Variabilitdt der Druckhaftigkeit weiter untersucht werden.

Die Tabelle 1 gibt einen Uberblick tiber die Bemessungshilfen, die im Rahmen dieses
Forschungsprojektes entwickelt wurden.

Einige Teile der Kapitel wurden bereits durch wissenschaftliche Publikationen fur die
Ingenieurgemeinschaft zuganglich gemacht. Der Abschnitt 2.1 wurde in Mezger et al. [5]
veroffentlicht und in Mezger et al. [6] prasentiert; Abschnitt 2.2 wurde in Mezger and
Anagnostou [7] prasentiert.
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Tabelle 1. Ubersicht iiber die Bemessungshilfen.

Vortrieb durch diinnbankiges Gebirge (Schichtdicke h < 5% des Tunnelradius a):

h

B i el

=
O

=

at u

Die Radialverschiebung ua ist
gleichmassig Uber den Umfang
des Tunneprofils verteilt und
kann mit der analytischen
Lésung aus Abschnitt 3.2
bestimmt werden;

Zudem wurde eine Methode zur
Bestimmung von aquivalenten
Parametern vorgeschlagen, mit
welcher Probleme analysiert
werden kénnen, die nicht
Rotationssymmetrie erfiillen
(Abschnitt 3.3).

at VU Ui

7

Die Radialverschiebung ist
ungleichméssig Uber den
Umfang des Tunnelprofils
verteilt. Fur die minimalen und
maximalen Verformungen
wurden dimensionslose
Diagramme erstellt (Abschnitt
4.2.4);

Zudem wird eine Methode zur
Bestimmung von aquivalenten
Parametern vorgeschlagen, mit
welcher das Gebirgsverhalten
unter beliebigen Bedingungen
eingegrenzt werden kann
(Abschnitt 4.2.5).

7

Die Radialverschiebung ist
ungleichméssig Uber den
Umfang des Tunnelprofils
verteilt. Die kleinste und grésste
Verschiebung kann mit den
Gleichungen 5.1 und 5.4
(Abschnitt 5.1) abgeschatzt
werden.

Vortrieb durch eine Wechsellagerung von Gesteinen unterschiedlicher Festigkeit:

h w

.

"

T

Die grosste Verformung Umax tritt

in der Mitte der schwachen

Zone auf. Sie kann durch eine in

Abschnitt 3.4 entwickelte
Gleichung abgeschétzt werden.

WI

Im Allgemeinen ist die
Radialverschiebung
ungleichmassig Uber den
Umfang des Profils verteilt. Die
maximale Verformung kann
naherungsweise basierend auf
Abschnitt 4.3 bestimmt werden.
Wenn jedoch H/a > 5 (siehe
Abbildung unten), dann ist die
Radialverschiebung etwa
gleichmassig Uiber den Umfang
des Profils verteilt und die
Ublichen Gleichungen flr die
GKL kénnen unter
Bericksichtigung der
schwachen Gesteinsparameter
angewendet werden.

at ¥ U af tu,,,

(Fortsetzung der Tabelle auf der nachsten Seite)
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Tabelle 1 (Forts.). Ubersicht (iber die Bemessungshilfen.

Vortrieb durch ungefaltetes geschiefertes Gebirge (konstante Raumstellung der

Schieferung):

7

at u, at ‘Um

TP T

Die Radialverschiebung us ist ~ Die Radialverschiebung ist
gleichmassig tUber den Umfang ungleichmassig tGber den
des Tunnelprofils verteilt und Umfang des Tunnelprofils
kann mit den gangigen GKL- verteilt. FUr die grésste und
Gleichungen unter kleinste Verformung wurden
Berlicksichtigung der Parameter dimensionslose Diagramme
der Gesteinsmatrix bestimmt erstellt (Abschnitt 4.4.4.4);
werden. Zudem wird eine Methode zur
Bestimmung von aquivalenten
Parametern vorgeschlagen, mit
welcher das Gebirgsverhalten
unter beliebigen Bedingungen
eingegrenzt werden kann
(Abschnitt 4.5.5).

%

Die Radialverschiebung ist
ungleichmassig Uber den
Umfang des Tunnelprofils
verteilt. Die minimalen und
maximalen Verformungen
kénnen mit den Gleichungen 5.1
und 5.4 (Abschnitt 5.1)
abgeschatzt werden.

Vortrieb durch gefaltetes geschiefertes Gebirge:

\\// Y
v

Die Verformung ist
ungleichmassig Uber den
Umfang des Tunnelprofils und
langs des Tunnels verteilt. Die
grossten und kleinsten
Verformungen treten dort, wo
die Schieferung horizontal bzw.
am steilsten ist, auf und
unterscheiden sich im
Allgemeinen von den
Verformungen, die im
ungefalteten Gebirge auftreten
wurden. Der Einfluss der
Faltung ist vernachlassigbar
(und die o.g. Verfahren fir
ungefaltetes Gebirge kénnen
angewendet werden), wenn die
Periode 2L der Faltung gross
ist:
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Les "roches poussantes" désignent le phénomene de grandes déformations souvent
dépendantes du temps qui se développent lors du creusement de tunnels a travers des
roches faibles. L'intensité des déformations pendant I'excavation de tunnels dans des
roches poussantes est habituellement trés variable, méme lorsqu’il n’y a pas de
changement évident dans la méthode de construction, dans la profondeur de la couverture,
dans la lithologie ou dans la structure de la roche. Tant que les raisons de cette variabilité
ne sont pas connues, les convergences induites par I'excavation des tunnels ne peuvent
pas étre prédites avec une fiabilité suffisante. Cependant, des prédictions fiables sont
importantes pour déterminer le souténement ou le diametre de I'excavation et ainsi éviter
des travaux de reprofilage colteux et fastidieux.

Pour une profondeur de couverture et une méthode de construction données, il est admis
que les déformations de la roche dépendent des propriétés mécaniques de la roche, de
I'orientation spatiale de la stratification ou de la schistosité, de I'état de contrainte initial et
de la pression d'eau interstitielle. Il est donc évident que les raisons de la variabilité des
roches poussantes pendant l'excavation de tunnels doivent étre la variabilité de ces
facteurs d'influence le long du tunnel. Malgré les recherches intensives menées ces
derniéres années sur le probléme des roches poussantes, on ignore dans quelle mesure
ces facteurs influencent le comportement de la roche et comment ils peuvent étre pris en
compte dans la conception des tunnels, notamment s'ils changent sur de courtes distances
le long du tunnel. C'est par exemple le cas lord du creusement de tunnels a travers des
couches faibles et compétentes alternantes ou a travers des roches plissées.

Les objectifs de ce projet de recherche sont donc d'améliorer la sécurité et I'économie de
la construction de tunnels dans des roches poussantes, d'améliorer la compréhension de
la variabilité des roches poussantes et de mettre les expériences du projet AlpTransit a la
disposition de la communauté des ingénieurs. Les principaux objectifs sont les suivants :
(i) 'identification des facteurs responsables de la variabilité des roches poussantes, et (ii)
la quantification de l'influence de ces facteurs, afin de les utiliser comme indicateurs
pendant la construction pour l'identification et la prévision en temps du comportement des
roches poussantes. Pour atteindre ces objectifs, les données des tunnels de base du Saint-
Gothard, du Ceneri et du Létschberg sont analysées qualitativement — empiriquement, des
calculs numériques sont effectués pour étudier quantitativement l'influence des facteurs et
des outils décisionnels pour la planification, la conception et la construction des tunnels
sont élaborées. Une attention particuliére est accordée aux facteurs qui influencent les
convergences de maniére sensible, c'est-a-dire dont les variations — méme si elles sont
relativement petites — peuvent entrainer une variabilité significative du comportement
macroscopique. Par conséquent, ce projet de recherche se concentre sur la variabilité des
roches poussantes due a I'hétérogénéité du sol par rapport a ses caractéristiques
mécaniques a différentes échelles ainsi qu'a la variation de I'orientation des plans
d'anisotropie (stratification, schistosité). Dans ce projet de recherche, la dépendance
temporelle du comportement de la roche (due a la consolidation) ne sera pas prise en
compte. De plus, il est connu que I'état de contrainte initial peut influencer l'intensité des
déformations des roches poussantes : Si I'état de contrainte initial varie le long du tunnel,
comme ce peut étre le cas dans des roches plissés de fagon intensive ou dans des zones
de faille, l'intensité des déformations des roches poussantes peut étre variable. L'effet des
variations des contraintes in situ ne sera pas étudié dans ce projet de recherche.

Le chapitre 2 analyse les observations liées a la construction des trois tunnels de base de
I'AlpTransit. Ce chapitre donne en particulier un apergu concis de données disponibles
concernant la géologie, l'excavation, le souténement et la réponse des roches au
creusement de tunnels dans différentes sections du Saint-Gothard (section 2.1) du Ceneri
(section 2.2) et du Létschberg (section 2.3), en précisant les facteurs qui sont responsables
pour l'intensité et la variabilité des roches poussantes. De plus, l'influence de ces facteurs
est discutée et des corrélations empiriques sont établies qui permettent d'améliorer les
prévisions de convergences induites par les tunnels. Les observations de la construction
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des tunnels de I'AlpTransit ont montré que la variabilité des roches poussantes peut étre
attribuée a des variations de la structure du sol, comme la variation des propriétés
mécaniques de la roche (par exemple lors du creusement de tunnels a travers des roches
faibles et compétentes alternantes) ou la variation de l'orientation de la schistosité a I'axe
du tunnel due au plissement des roches.

Le contexte théorique de ces observations est fourni dans les chapitres 3 a 5 du rapport,
qui étudient l'intensité des roches poussantes dans le creusement de tunnels a travers des
roches faibles et compétentes alternantes ou a travers des roches plissées, en utilisant
des moyens de méthodes analytiques ou de calculs numériques. Pour l'analyse du
creusement de tunnels a travers des couches faibles et compétentes alternantes, il faut
distinguer trois cas concernant I'orientation des couches : une séquence de roches faibles
et compétentes alternantes, se trouvant (a) perpendiculairement, (b) parallélement ou (c)
avec une orientation arbitraire par rapport a I'axe du tunnel. Dans le premier cas, l'intensité
des roches poussantes peut étre trés variable selon I'épaisseur des couches par rapport
au diamétre du tunnel, c'est-a-dire a I'échelle de I'hétérogénéité mécanique du sol. Dans
le second cas, l'intensité des roches poussantes est constante le long de I'axe du tunnel,
mais les déformations ne sont pas uniformes le long du profil du tunnel. Comme cela a été
observé lors de la construction des tunnels de base du Saint-Gothard et du Ceneri, ces
deux situations géotechniques peuvent effectivement se produire dans la réalité et revétent
donc une importance pratique particuliére. Bien s(r, en réalité, une telle séquence de
couches faibles et compétentes alternantes peut étre caractérisée par des zones de
transition. Néanmoins, pour des raisons de simplicité, ce projet de recherche se concentre
sur un avancement a travers une séquence d'un seul matériau faible et d'un matériau
compétent.

Les chapitres 3 et 4 se concentrent sur les déformations du sol en sections transversales
loin derriére le front de taille. Celles-ci sont plus grandes que les convergences du profil
excavé parce qu'elles incluent les déformations qui se produisent en avant du front de taille
(dites "pré-déformations”). Comme indiqué aux chapitres 3 et 4, les pré-déformations (et
donc aussi les convergences du profil excavé) peuvent étre obtenues avec les méthodes
connues pour les matériaux élasto-plastiques isotropes.

Le chapitre 3 étudie les déformations induites par I'excavation dans les tunnels
perpendiculaires aux couches. Si les zones alternantes sont épaisses par rapport au
diamétre du tunnel, la réponse de ces formations au creusement du tunnel peut présenter
une grande variabilité, comme cela a été observé par exemple dans le trongon de Sedrun
du tunnel de base du Saint-Gothard. Toutefois, si la formation est constituée de couches
faibles et compétentes trés minces, la répartition des déformations le long de l'axe du
tunnel sera pratiguement uniforme. Cela signifie qu'au lieu de considérer un modéle
hétérogéne et de modéliser numériquement les couches individuelles, ce qui serait
exigeant en termes de discrétisation spatiale et de temps de calcul, la structure rocheuse
peut étre prise en compte en considérant un modéle homogéne, mais néanmoins
transversalement isotrope. Pour ce cas particulier, la section 3.2, présente une solution
analytique pour la courbe de convergence (CV; c'est-a-dire la relation entre les
déformations du tunnel en fonction de la pression de souténement), en utilisant la
technique d'homogénéisation et en assumant une symétrie de rotation, de conditions de
déformation plane, un comportement parfaitement plastique pour les couches faibles et un
comportement parfaitement plastique ou cassant (avec une diminution de la résistance
apreés la rupture) pour les couches compétentes.

La réponse du matériau homogénéisé considéré au creusement de tunnels est isotrope
(puisque la paroi du tunnel subit une déformation radiale uniforme). Ceci suggére qu'il est
possible de considérer la masse rocheuse comme un matériau isotrope et homogéne avec
des parametres mécaniques, qui dépendent des paramétres et des fractions des couches
faibles et compétentes. Une telle approche serait utile en pratique parce qu'elle permettrait
d'utiliser des méthodes de calcul et des programmes communs pour résoudre des
problémes qui ne répondent pas aux conditions de symétrie de rotation ou de déformation
plane et cela, méme pour des roches finement stratifiées. La section 3.3 approfondit cette
idée et détermine des paramétres équivalents (module d'Young Eeq, coefficient de Poisson
Veq, angle de frottement @eq, cohesion ceq et angle de dilatation weq) d'une masse rocheuse
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isotrope homogéne en fonction des propriétés et fractions des couches faibles et
compétentes.

Les résultats des sections 3.2 et 3.3 s'appliquent a des couches faibles et compétentes
alternantes qui sont si minces (par rapport au diametre du tunnel) que la masse rocheuse
peut étre considérée comme homogéne a I'échelle de la section transversale du tunnel.
Dans le cas contraire, si les couches sont plus épaisses et que I'hypothése d'un modéle
homogénéisé n'est donc pas valable, des calculs numériques doivent étre effectuées dans
I'état actuel de la recherche, ou les couches faibles et compétentes doivent étre modélisées
discréetement. Cependant, la section 3.4 montre que les déformations dans les zones
faibles peuvent étre estimées au moyen d'une équation simple qui prend en compte
l'influence stabilisatrice des couches dures adjacentes.

Le chapitre 4 étudie les déformations du tunnel induites par I'excavation dans la masse
rocheuse stratifiée, constituée de couches faibles et compétentes orientées parallélement
a l'axe du tunnel. Evidemment, si les couches sont trés épaisses et que leur interface se
trouve a une grande distance du tunnel, alors les déformations du profil du tunnel seront
pratiques uniformes et I'hétérogénéité du sol pourra étre négligée. Sinon, les déformations
des roches poussantes le long du profil du tunnel ne seront pas uniformes et cela, méme
si les couches sont trés minces.

Le creusement de tunnels a travers des couches faibles et compétentes alternantes, étant
trés minces et qui sont orientées parallelement a I'axe du tunnel, peut étre analysé en
considérant, comme en section 3.2, un médium homogéne et transversalement isotrope.
Cependant, contrairement a la section 3.2, les conditions de symétrie de rotation ne sont
plus satisfaites et, par conséquent, ce probléeme de valeur limite doit étre résolu
numériquement. Par conséquent, le modéle constitutif de la section 4.2 a été formulé pour
les états de contrainte de de déformation 3D généraux et implémenté dans Abaqus. Les
constantes du matériau de ce modéle homogéne équivalent sont constituées des fractions
d'épaisseur et de parameétres mécaniques de couches alternantes. A l'aide de ce modéle,
une étude paramétrique compléte a été réalisée couvrant une large variété de parametres
géotechniques. Les résultats sont présentés sous forme de diagrammes de conception
sans dimension qui permettent une estimation rapide des déformations maximum et
minimum du profil du tunnel. Méme si la réponse du sol est anisotrope dans ce cas, ces
diagrammes peuvent également étre utilisés, par analogie avec la section 3.3, pour
déterminer les paramétres d'une masse rocheuse isotrope homogeéne, qui est équivalente
a la masse rocheuse isotrope en ce sens que ses déformations induites par le tunnel sont
égales soit aux déformations maximum ou minimum du modéle anisotrope. Comme le
montre la section 4.2.5, |'utilisation de ce modéle isotrope équivalent permet de trouver une
limite supérieure et une limite inférieure des déformations dans des problémes plus
complexes (qui ne satisfont pas la condition de déformation plane).

Finalement, la section 4.3 examine I'adéquation et les limites de I'homogénéisation d'une
masse rocheuse stratifiée et l'influence de I'épaisseur des couches. La section 4.4 traite
du cas du creusement de tunnels a travers des roches schisteuses orientées parallélement
a l'axe du tunnel. La raison pour laquelle on considére la schistosité au chapitre 4 (qui traite
en fait des masses rocheuses stratifiées) est que la réponse d'une masse rocheuse
schisteuse présente certaines similitudes avec celle d'une masse rocheuse stratifiée : Une
masse rocheuse schisteuse peut étre congue, du point de vue mécanique, comme un cas
limite d'une masse rocheuse finement stratifiée. La schistosité est sans importance pour le
creusement de tunnels perpendiculaires aux couches, mais a une influence prononcée sur
les déformations si les plans de schistosité sont orientés parallélement a I'axe du tunnel.
Puisque le modéle constitutif qui a été implémenté pour les roches finement stratifiées en
section 4.2 est inefficace sur le plan informatique dans le cas limite de la schistosité, la
section 4.4 commence par la formulation d'un modéle constitutif optimisé spécifiquement
pour la roche schisteuse, continue avec l'étude des effets de la schistosité sur les
déformations et se termine avec I'‘élaboration des diagrammes de conception qui
permettent une estimation rapide des déformations dans des tunnels traversant des roches
schisteuses (en assumant a nouveau des conditions de déformation plane) pour une large
variété de parameétres.
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Le chapitre 5 traite du creusement de tunnels a travers des masses de roches schisteuses
ou a stratification mince avec une orientation arbitraire des plans d'anisotropie par rapport
a l'axe du tunnel. Premiérement, dans la section 5.1, le cas relativement simple de
I'orientation constante des plans d'anisotropie le long du tunnel est examiné, tout en prétant
attention a l'effet de l'inclinaison ainsi qu'a la direction des plans d'anisotropie par rapport
a I'axe du tunnel sur les pré-déformations et donc dur les déformations du profil du tunnel
excaveé ("convergences"). Les pré-déformations dépendent essentiellement de I'orientation
des plans d'anisotropie et, comme le montre la section 5.1.2.2, peuvent étre
considérablement plus élevées que celles estimées avec les méthodes connues qui ont
été développées pour les matériaux isotropes. La section 5.1 présente une méthode
simplifiée d'estimation des convergences des tunnels. Par la suite, la section 5.2 analyse
numériquement le cas du creusement de tunnels a travers des formations rocheuses
plissées, ou l'orientation des plans d'anisotropie et par conséquent l'intensité des roches
poussantes varient le long de I'axe du tunnel. Une structure de roche plissée simplifiée est
considérée avec une forme sinusoidale de la stratification ou de la schistosité. Le plissage
est pris en compte numériquement dans les modéles constitutifs en considérant que le
vecteur normal a la surface d'anisotropie est dépendant de la position. Les résultats
numériques montrent que la variabilit¢é des convergences dépend essentiellement de
I'amplitude et de la période des plans d'anisotropie. Finalement, la section 5.2.5 revient sur
le cas du trongon de Sedrun du tunnel de base du Saint-Gothard et présente le contexte
théorique du facteur de schistosité présenté dans la section 2.1.
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Squeezing refers to the phenomenon of large and often time-dependent deformations that
develop when tunnelling through weak rocks. The magnitude of squeezing deformations in
tunnelling often varies over short distances even where there is no obvious change in the
construction method, in the depth of cover, in the lithology or rock structure. As long as the
reasons for the variability are not known, the tunnelling-induced convergences cannot be
predicted with sufficient reliability. Reliable predictions, however, are important for
determining the temporary support or the excavation diameter. Otherwise, large-scale
tunnel repairs may be necessary, which can cause delay and additional costs due to
remedial actions as well as due to the enforced interruption of other operations in progress
at the same time. The variability of squeezing intensity is one main cause of setbacks that
even highly qualified engineers may experience in some cases.

For a given overburden and construction method, it is known that the rock deformations
depend on the mechanical properties of the rock, on the spatial orientation of the
stratification or schistosity, on the initial stress state and on the pore water pressure. It is
therefore obvious that the reasons for the squeezing variability during advance must be the
variability of these influencing factors along the tunnel. In spite of the intensive research of
the last years on the problem of squeezing ground, it is not known to what extent these
factors influence the rock behaviour and how they can be taken into account during design,
particularly if they change within short distances along the tunnel. This is for example the
case when tunnelling through alternating weak and competent layers or through folded
rocks.

The goals of the present research project are thus to improve safety and economy of tunnel
construction in squeezing ground, to improve the understanding of squeezing variability
and to make the related experiences from the AlpTransit project available to the
engineering community. The main objectives serving these goals are: (i) the identification
of those factors, which are responsible for the squeezing variability, and (i) the
quantification of the influence of these factors, in order to use them as indicators during
construction for the timely identification and prediction of the squeezing behaviour. To
achieve these objectives, the data from the Gotthard, Ceneri and Lotschberg Base Tunnels
are analysed qualitatively — empirically, numerical calculations are performed to investigate
quantitatively the influence of the factors and decision aids for the planning, design and
construction of tunnels are developed. Particular attention is paid to factors that influence
convergences sensitively, i.e., whose variations — even if relatively small — may cause a
significant variability in the macroscopic behaviour. Therefore, this research project focuses
on the squeezing variability due to the heterogeneity of the ground with respect to its
mechanical characteristics at different scales as well as the variation of the orientation of
the anisotropy planes (bedding, schistosity). In this research project, the time-dependence
of the rock behaviour (due to consolidation) will not be considered. Furthermore, it is known
that the initial stress state may influence the squeezing intensity: If the initial stress state
varies along the tunnel, as it may be the case in intensively folded rocks or in fault zones,
squeezing intensity may be variable. The effect of in situ stress variations will not be studied
in this research project.

Chapter 2 analyses the observations of the construction of the three AlpTransit Base
Tunnels. Specifically, this chapter gives a concise overview of the available data
concerning the geology, the excavation and support and the rock response to tunnelling of
different sections of the Gotthard (Section 2.1), Ceneri (Section 2.2) and Létschberg Base
Tunnel (Section 2.3) and identifies the factors that are responsible for the squeezing
intensity and variability. Furthermore, the influence of these factors is discussed and
empirical correlations are established that allow to improve the predictions of the tunnelling-
induced convergences. The observations of the construction of the AlpTransit tunnels could
show that the squeezing variability can be traced back to variations of the structure of the
ground, as the variation of the mechanical properties of the rock (for example when
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tunnelling through alternating weak and competent rocks) or the variation of the orientation
of the schistosity to the tunnel axis due to folding.

The theoretical background of these observations is provided in Chapters 3 to 5 of the
report, which investigate the squeezing intensity in tunnelling through alternating weak and
competent rocks or through folded rocks by means of analytical methods or numerical
computations. For the analysis of tunnelling through alternating weak and competent
layers, three cases are distinguished with respect to the orientation of the layers: a
sequence of alternating weak and hard rocks lying (a) perpendicular, (b) parallel or (c) with
an arbitrary orientation to the tunnel axis. In the first case, the squeezing intensity may be
very variable depending on the thickness of the layers with respect to the tunnel radius,
i.e., on the scale of the mechanical heterogeneity of the ground. In the second case, the
squeezing intensity is constant along the tunnel axis, but the deformations are not uniform
along the tunnel profile. As was observed during the construction of the Gotthard and the
Ceneri Base Tunnels, these two geotechnical situations can effectively occur in reality and
are thus of particular practical importance. Of course, in reality, such a sequence of hard
and weak layers may be characterised by transition zones. Nevertheless, for simplicity
reasons, this research project focuses on an advance through a sequence of only one hard
and one weak material.

Chapters 3 and 4 focus on the displacements of the ground in cross-sections far behind
the tunnel face. These are greater than the convergences of the excavated profile because
they include the deformations that occur ahead of the face (so-called “pre-deformations”).
As shown in Chapters 3 and 4, the pre-deformations (and thus also the convergences of
the excavated profile) can be obtained with the known methods for isotropic elasto-plastic
materials.

Chapter 3 investigates the excavation-induced displacements in tunnelling perpendicular
to the layers. If the alternating zones are thick relatively to the tunnel diameter, the response
of such formations to the tunnel excavation may exhibit a great variability, as was observed
for instance in the Sedrun Section of the Gotthard Base Tunnel. If, however, the formation
consists of very thin alternating weak and competent rock layers, the deformation
distribution along the tunnel axis will be practically uniform. This means that rather than
considering a heterogeneous model and modelling the individual layers numerically, which
would be demanding in terms of spatial discretisation and computation time, the rock
structure can be taken into account by considering a homogeneous, but nevertheless
transversely isotropic model. For this special case, Section 3.2 presents a closed-form
solution for the ground response curve (GRC; i.e., the relationship between the radial
displacement at the tunnel boundary and the support pressure), using the homogenisation
technique and assuming rotational symmetry, plane strain conditions, perfectly plastic
behaviour for the weak layers and either perfectly plastic or brittle behaviour (with post-
failure decrease in strength) for the hard layers. The response of the considered
homogenised material to tunnelling is isotropic (since the excavation boundary experiences
a uniform radial displacement). This suggests that it may be possible to consider the rock
mass as an isotropic and homogeneous material with mechanical parameters, which
depend on the parameters and fractions of the weak and hard layers. Such an approach
would be useful in practice because it would allow using common calculation methods and
programs to solve problems that do not meet the conditions of rotational symmetry or plane
strain and this even for thinly stratified rocks. Section 3.3 investigates into more depth this
idea and determines the equivalent parameters (Young’s modulus Eeq, Poisson’s ratio veg,
friction angle @eq, cohesion ceq and dilatancy angle weq) of an isotropic homogeneous rock
mass as a function of the properties and fractions of the weak and the hard layers. The
results of Sections 3.2 and 3.3 apply to alternating weak and hard layers that are so thin
(relative to the tunnel radius) that the rock mass can be considered as homogeneous at
the scale of the tunnel cross-section. Otherwise, if the layers are thicker and thus the
assumption of a homogenised model is not valid, at the current state of research numerical
calculations have to be performed, where the weak and the hard layers have to be modelled
discretely. However, Section 3.4 shows that the displacements in weak zones can be
estimated by means of a simple equation which takes into account the stabilising influence
of the adjacent hard layers.
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Chapter 4 investigates the excavation-induced tunnel displacements in stratified rock
mass, consisting of alternating weak and hard layers that are oriented parallel to the tunnel
axis. Obviously, if the layers are very thick and their interface lies at a great distance to the
tunnel, then the displacements of the tunnel profile will be practically uniform and thus the
heterogeneity of the ground can be neglected. Otherwise, the squeezing deformations
along the tunnel profile will not be uniform and this even if the layers are very thin.
Tunnelling through thinly alternating weak and hard layers that strike parallel to the tunnel
axis can be analysed by considering, analogously to Section 3.2, a homogeneous and
transversely isotropic medium. However, in contrast to Section 3.2, the conditions of
rotational symmetry are not fulfiled anymore and, consequently, this boundary value
problem has to be solved numerically. Therefore, the constitutive model of Section 4.2 was
formulated for general 3D stress- and strain-states and implemented in Abaqus. The
material constants of this equivalent homogeneous model consist of the thickness fractions
and mechanical parameters of the alternating layers. Using this model, a comprehensive
parametric study was carried out covering a wide range of geotechnical parameters. The
results are presented in the form of dimensionless design diagrams that allow for a quick
estimation of the maximum and minimum displacements of the tunnel profile. Even if the
response of the ground is anisotropic in this case, these diagrams can also be used,
analogously to Section 3.3, to determine the parameters for an isotropic homogeneous
rock mass, which is equivalent to the isotropic rock mass in the sense that its tunnelling-
induced displacements are equal either to the maximum or to the minimum displacements
of the anisotropic model. As shown in Section 4.2.5, using this equivalent isotropic model
makes it possible to find an upper and a lower bound of the displacements in more complex
problems (that do not meet the condition of plane strain). Finally, Section 4.3 examines the
adequacy and limits of the homogenisation of a stratified rock mass and the influence of
the layer thickness. Section 4.4 concerns the case of tunnelling through schistous rocks
striking parallel to the tunnel axis. The reason for considering schistosity in Chapter 4
(which actually deals with stratified rock masses) is that the response of a schistous rock
mass exhibits certain similarities to that of a stratified rock mass: A schistous rock mass
can be conceived, from the mechanical point of view, as a borderline case of a thinly
stratified rock mass. Schistosity is irrelevant for tunnelling perpendicular to the layers, but
has a pronounced influence on the displacements if the schistosity plane strikes parallel to
the tunnel axis. Since the constitutive model that was implemented for thinly stratified rocks
in Section 4.2 is computationally inefficient for the borderline case of schistosity, Section
4.4 starts with the formulation of an optimised constitutive model specifically for schistous
rock, continues with the investigation into the effect of schistosity on the displacements and
closes with working out design diagrams that allow a quick estimation of the tunnel
displacements in schistous rocks (assuming again plane strain conditions) for a wide
parameter range.

Chapter 5 considers tunnelling through thinly stratified or schistous rock masses with an
arbitrary orientation of the anisotropy planes with respect to the tunnel axis. First, in Section
5.1, the relatively simple case of constant orientation of the anisotropy planes along the
tunnel is considered, while paying attention to the effect of the dip angle and strike of the
anisotropy planes relative to the tunnel axis on the pre-deformations and thus on the
deformations of the excavated tunnel profile (“‘convergences”). The pre-deformations
depend essentially on the orientation of the anisotropy planes and, as shown in Section
5.1.2.2, may be considerably higher than those estimated with the known methods which
were developed for isotropic materials. Section 5.1 shows a simplified method for
estimating the tunnel convergences. Subsequently, Section 5.2 analyses numerically the
case of tunnelling through folded rock formations, where the orientation of the anisotropy
planes and consequently the squeezing intensity vary along the tunnel axis. A simplified
folded rock structure is considered with a sinusoidal form of the bedding or schistosity
surface. Folding is taken into account numerically in the constitutive models by considering
that the normal vector to the anisotropy surface is position-dependent. The numerical
results show that the variability of the convergences depends essentially on the amplitude
and period of the anisotropy surface. Finally, Section 5.2.5 revisits the case history of the
Sedrun section of the Gotthard Base Tunnel, providing the theoretical background of the
schistosity factor introduced in Section 2.1.

November 2019 21






1.1

1664 | On the variability of squeezing behaviour in tunnelling

Context and objectives of the research project

Squeezing refers to the phenomenon of large and often time-dependent deformations that
develop when tunnelling through weak rocks. The magnitude of squeezing deformations in
tunnelling often varies over short distances even where there is no obvious change in the
construction method, in the depth of cover, in the lithology or rock structure. As long as the
reasons for the variability are not known, the tunnelling-induced convergences cannot be
predicted with sufficient reliability. Reliable predictions, however, are important for
determining the temporary support or the excavation diameter. Otherwise, large-scale
tunnel repairs may be necessary, which can cause delay and additional costs due to
remedial actions as well as due to the enforced interruption of other operations in progress
at the same time. The variability of squeezing intensity is one main cause of setbacks that
even highly qualified engineers may experience in some cases [1].

For a given overburden and construction method, it is known that the rock deformations
depend on the mechanical properties of the rock, on the spatial orientation of the
stratification or schistosity, on the initial stress state and on the pore water pressure. It is
therefore obvious that the reasons for the squeezing variability during advance must be the
variability of these influencing factors along the tunnel. In spite of the intensive research of
the last years on the problem of squeezing ground, it is not known to what extent these
factors influence the rock behaviour and how they can be taken into account during design,
particularly if they change within short distances along the tunnel. This is for example the
case when tunnelling through alternating weak and competent layers (Fig. 1.1a) or through

Y

Figure 1.1. Tunnel drive through, (a), alternating weak and hard layers, (b), through folded
rocks.

The goals of the present research project are thus to improve safety and economy of tunnel
construction in squeezing ground, to improve the understanding of squeezing variability
and to make the related experiences from the AlpTransit project available to the
engineering community. The main objectives serving these goals are: (i) the identification
of those factors, which are responsible for the squeezing variability, and (i) the
quantification of the influence of these factors, in order to use them as indicators during
construction for the timely identification and prediction of the squeezing behaviour. To
achieve these objectives, the data from the Gotthard, Ceneri and Létschberg Base Tunnels
are analysed qualitatively — empirically, numerical calculations are performed to investigate
quantitatively the influence of the factors and decision aids for the planning, design and
construction of tunnels are developed. Particular attention is paid to factors that influence
convergences sensitively, i.e., whose variations — even if relatively small — may cause a
significant variability in the macroscopic behaviour. Therefore, this research project focuses
on the squeezing variability due to the heterogeneity of the ground with respect to its
mechanical characteristics at different scales as well as the variation of the orientation of
the anisotropy planes (bedding, schistosity). In this research project, the time-dependence
of the rock behaviour (due to consolidation) will not be considered. Furthermore, it is known
that the initial stress state may influence the squeezing intensity: If the initial stress state
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varies along the tunnel, as it may be the case in intensively folded rocks or in fault zones,
squeezing intensity may be variable. The effect of in situ stress variations will not be studied
in this research project.

Outline of the investigations
This research report consists of four parts (Chapters 2 to 5):

Chapter 2 analyses the observations of the construction of the three AlpTransit Base
Tunnels. Specifically, this chapter gives a concise overview of the available data
concerning the geology, the excavation and support and the rock response to tunnelling of
different sections of the Gotthard (Section 2.1), Ceneri (Section 2.2) and Létschberg Base
Tunnel (Section 2.3) and identifies the factors that are responsible for the squeezing
intensity and variability. Furthermore, the influence of these factors is discussed and
empirical correlations are established that allow to improve the predictions of the tunnelling-
induced convergences. The observations of the construction of the AlpTransit tunnels could
show that the squeezing variability can be traced back to variations of the structure of the
ground, as the variation of the mechanical properties of the rock (for example when
tunnelling through alternating weak and competent rocks) or the variation of the orientation
of the schistosity to the tunnel axis due to folding.

The theoretical background of these observations is provided in Chapters 3 to 5 of the
report, which investigate the squeezing intensity in tunnelling through alternating weak and
competent rocks (Fig. 1.1a) or through folded rocks (Fig. 1.1b) by means of analytical
methods or numerical computations. For the analysis of tunnelling through alternating weak
and competent layers, three cases are distinguished with respect to the orientation of the
layers (cf. Fig. 1.2): a sequence of alternating weak and hard rocks lying (a) perpendicular,
(b) parallel or (c) with an arbitrary orientation to the tunnel axis. In the first case, the
squeezing intensity may be very variable depending on the thickness of the layers with
respect to the tunnel radius, i.e., on the scale of the mechanical heterogeneity of the
ground. In the second case (cf. Fig. 1.2b), the squeezing intensity is constant along the
tunnel axis, but the deformations are not uniform along the tunnel profile. As was observed
during the construction of the Gotthard and the Ceneri Base Tunnels, these two
geotechnical situations can effectively occur in reality and are thus of particular practical
importance. Of course, in reality, such a sequence of hard and weak layers may be
characterised by transition zones. Nevertheless, for simplicity reasons, this research
project focuses on an advance through a sequence of only one hard and one weak
material.

=3

[ weak layer [ hard layer

Figure 1.2. Investigated orientations of the layers to the tunnel axis for a sequence of
alternating weak and hard rocks.

Chapters 3 and 4 focus on the displacements of the ground in cross-sections far behind
the tunnel face. These are greater than the convergences of the excavated profile because
they include the deformations that occur ahead of the face (so-called “pre-deformations”).
As shown in Chapters 3 and 4, the pre-deformations (and thus also the convergences of
the excavated profile) can be obtained with the known methods for isotropic elasto-plastic
materials.

Chapter 3 investigates the excavation-induced displacements in tunnelling perpendicular
to the layers (cf. Fig. 1.2a). If the alternating zones are thick relatively to the tunnel diameter
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(diagram 1.a in Fig. 1.3), the response of such formations to the tunnel excavation may
exhibit a great variability, as was observed for instance in the Sedrun Section of the
Gotthard Base Tunnel. If, however, the formation consists of very thin alternating weak and
competent rock layers, the deformation distribution along the tunnel axis will be practically
uniform (diagram 1.c in Fig. 1.3). This means that rather than considering a heterogeneous
model and modelling the individual layers numerically, which would be demanding in terms
of spatial discretisation and computation time, the rock structure can be taken into account
by considering a homogeneous, but nevertheless transversely isotropic model (diagram 1.i
in Fig. 1.3). For this special case, Section 3.2 presents a closed-form solution for the ground
response curve (GRC; i.e., the relationship between the radial displacement at the tunnel
boundary and the support pressure; [2]), using the homogenisation technique (see, e.g.,
[3]) and assuming rotational symmetry, plane strain conditions, perfectly plastic behaviour
for the weak layers and either perfectly plastic or brittle behaviour (with post-failure
decrease in strength) for the hard layers.

Problem statement for the layers lying Problem statement for the layers lying
perpendicular to the tunnel axis parallel to the tunnel axis
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Figure 1.3. Left: Problem statement for alternating weak and hard layers lying
perpendicular to the tunnel axis. Right: Problem statement for alternating weak and hard
layers lying parallel to the tunnel axis.

The response of the considered homogenised material to tunnelling is isotropic (since the
excavation boundary experiences a uniform radial displacement). This suggests that it may
be possible to consider the rock mass as an isotropic and homogeneous material (diagram
1.ii in Fig. 1.3) with mechanical parameters, which depend on the parameters and fractions
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of the weak and hard layers. Such an approach would be useful in practice because it
would allow using common calculation methods and programs to solve problems that do
not meet the conditions of rotational symmetry or plane strain and this even for thinly
stratified rocks. Section 3.3 investigates into more depth this idea and determines the
equivalent parameters (Young's modulus Eeq, Poisson’s ratio veq, friction angle @eq,
cohesion ceq and dilatancy angle weq, diagram 1.ii in Fig. 1.3) of an isotropic homogeneous
rock mass as a function of the properties and fractions of the weak and the hard layers.

The results of Sections 3.2 and 3.3 apply to alternating weak and hard layers that are so
thin (relative to the tunnel radius) that the rock mass can be considered as homogeneous
at the scale of the tunnel cross-section. Otherwise, if the layers are thicker and thus the
assumption of a homogenised model is not valid, at the current state of research numerical
calculations have to be performed, where the weak and the hard layers have to be modelled
discretely. However, Section 3.4 shows that the displacements in weak zones can be
estimated by means of a simple equation which takes into account the stabilising influence
of the adjacent hard layers.

Chapter 4 investigates the excavation-induced tunnel displacements in stratified rock
mass, consisting of alternating weak and hard layers that are oriented parallel to the tunnel
axis (Fig. 1.2b). Obviously, if the layers are very thick and their interface lies at a great
distance to the tunnel (diagram 2.a in Fig. 1.3), then the displacements of the tunnel profile
will be practically uniform and thus the heterogeneity of the ground can be neglected.
Otherwise (diagram 2.b in Fig. 1.3), the squeezing deformations along the tunnel profile
will not be uniform and this even if the layers are very thin (diagram 2.c in Fig. 1.3).

Tunnelling through thinly alternating weak and hard layers that strike parallel to the tunnel
axis can be analysed by considering, analogously to Section 3.2, a homogeneous and
transversely isotropic medium (diagram 2.i in Fig. 1.3; Section 4.2). However, in contrast
to Section 3.2, the conditions of rotational symmetry are not fulfilled anymore and,
consequently, this boundary value problem has to be solved numerically. Therefore, the
constitutive model of Section 4.2 was formulated for general 3D stress- and strain-states
(using the homogenisation technique of [4]) and implemented in Abaqus. The material
constants of this equivalent homogeneous model consist of the thickness fractions and
mechanical parameters of the alternating layers. Using this model, a comprehensive
parametric study was carried out covering a wide range of geotechnical parameters. The
results are presented in the form of dimensionless design diagrams that allow for a quick
estimation of the maximum and minimum displacements of the tunnel profile. Even if the
response of the ground is anisotropic in this case, these diagrams can also be used,
analogously to Section 3.3, to determine the parameters for an isotropic homogeneous
rock mass (diagram 2.ii in Fig. 1.3), which is equivalent to the isotropic rock mass in the
sense that its tunnelling-induced displacements are equal either to the maximum or to the
minimum displacements of the anisotropic model. As shown in Section 4.2.5, using this
equivalent isotropic model makes it possible to find an upper and a lower bound of the
displacements in more complex problems (that do not meet the condition of plane strain).

Finally, Section 4.3 examines the adequacy and limits of the homogenisation of a stratified
rock mass and the influence of the layer thickness.

Section 4.4 concerns the case of tunnelling through schistous rocks striking parallel to the
tunnel axis. The reason for considering schistosity in Chapter 4 (which actually deals with
stratified rock masses) is that the response of a schistous rock mass exhibits certain
similarities to that of a stratified rock mass: A schistous rock mass can be conceived, from
the mechanical point of view, as a borderline case of a thinly stratified rock mass.
Schistosity is irrelevant for tunnelling perpendicular to the layers (diagram 1.c in Fig. 1.3),
but has a pronounced influence on the displacements if the schistosity plane strikes parallel
to the tunnel axis.

Since the constitutive model that was implemented for thinly stratified rocks in Section 4.2
is computationally inefficient for the borderline case of schistosity, Section 4.4 starts with
the formulation of an optimised constitutive model specifically for schistous rock, continues
with the investigation into the effect of schistosity on the displacements and closes with
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working out design diagrams that allow a quick estimation of the tunnel displacements in
schistous rocks (assuming again plane strain conditions) for a wide parameter range.

Chapter 5 considers tunnelling through thinly stratified or schistous rock masses with an
arbitrary orientation of the anisotropy planes with respect to the tunnel axis (cf. Fig. 1.2c).
First, in Section 5.1, the relatively simple case of constant orientation of the anisotropy
planes along the tunnel is considered, while paying attention to the effect of the dip angle
and strike of the anisotropy planes relative to the tunnel axis on the pre-deformations and
thus on the deformations of the excavated tunnel profile (“‘convergences”). The pre-
deformations depend essentially on the orientation of the anisotropy planes and, as shown
in Section 5.1.2.2, may be considerably higher than those estimated with the known
methods which were developed for isotropic materials. Section 5.1 shows a simplified
method for estimating the tunnel convergences.

Subsequently, Section 5.2 analyses numerically the case of tunnelling through folded rock
formations (Fig. 1.1b), where the orientation of the anisotropy planes and consequently the
squeezing intensity vary along the tunnel axis. A simplified folded rock structure is
considered with a sinusoidal form of the bedding or schistosity surface. Folding is taken
into account numerically in the constitutive models by considering that the normal vector to
the anisotropy surface is position-dependent. The numerical results show that the variability
of the convergences depends essentially on the amplitude and period of the anisotropy
surface. Finally, Section 5.2.5 revisits the case history of the Sedrun section of the Gotthard
Base Tunnel, providing the theoretical background of the schistosity factor introduced in
Section 2.1.

Table 1.1 gives an overview of the design aids, which were developed in the context of this
research project and which will be presented in the following chapters.

Remarks

In this research project, as usual in geotechnics, compression will be taken as positive for
the stresses and the strains.
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Table 1.1. Overview of the design aids.

Tunnelling through thinly stratified rocks (layer thickness h < 5% tunnel radius a):

h

b

hi

wi

af by, at Iy _—u

maxtis Ymin.it

/

The radial displacement ua is The radial displacement is non-
uniformly distributed over the uniformly distributed over the
circumference of the profile and circumference of the profile.
can be determined using the Dimensionless diagrams are
closed-form solution of Section provided for the minimum and
3.2; maximum displacement
Furthermore, a method for (Section 4.2.4);
determining equivalent Furthermore, a method for
parameters is proposed, which determining equivalent
can be used to analyse parameters is proposed, which
problems not obeying rotational can be used to bound the
symmetry (Section 3.3). ground response under arbitrary
conditions (Section 4.2.5).

Z

The radial displacement is non-
uniformly distributed over the
circumference of the profile. The
minimum and maximum
displacement can be estimated
approximately using Egs. 5.1
and 5.4 (Section 5.1).

Tunnelling through alternating weak and competent rocks:

h w

.-

"

L T U,

“

In general, the radial

x3 Y min

The maximum displacement

Umax occurs in the middle of the displacement is non-uniformly

weak zone. It can be distributed over the

determined approximately by an circumference of the profile. The

equation proposed in Section maximum displacement can be

3.4. determined approximately
based upon Section 4.3.
However, if H/a > 5 (see figure
below), then the radial
displacement is approximately
uniformly distributed over the
circumference of the profile and
the common GRC equations
can be applied considering the
weak rock parameters.

at ¥ Uy af U

(Table continues on the next page)
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Table 1.1 (cont.). Overview of the design aids.

Tunnelling through unfolded schistous rocks (constant schistosity plane orientation):

7

at u, L TR v

LT T

The radial displacement us is
uniformly distributed over the
circumference of the profile and
can be determined using the
common GRC equations
considering the parameters of
the rock matrix.

The radial displacement is non-
uniformly distributed over the
circumference of the profile.
Dimensionless diagrams are
provided for the maximum and
minimum displacement (Section
4.4.4),

Furthermore, a method for
determining equivalent
parameters is proposed, which
can be used to bound the

ground response under arbitrary

conditions (Section 4.5.5).

Z

The radial displacement is non-
uniformly distributed over the
circumference of the profile. The
minimum and maximum
displacements can be estimated
approximately using Egs. 5.1
and 5.4 (Section 5.1).

Tunnelling through folded schistous rocks:

A
o

The displacement is non-
uniformly distributed over the
circumference of the profile and
along the tunnel. The maximum
and the minimum displacements
occur at the locations with
horizontal and steepest
schistosity planes, respectively,
and are in general different from
the displacements that would
occur in the case of unfolded
rock. The influence of folding is
negligible (and the above-
mentioned methods for unfolded
rocks can be applied) if the
folding period

2L > 8

2 tan10° a
1-—arccos————
V1 tanw

s,max
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Sedrun Section of the Gotthard Base Tunnel’

Introduction

The magnitude of squeezing deformations occurring in tunnelling often varies over short
distances even where there is no obvious change in the excavation method, depth of the
cover and lithology. The variability of the ground response to excavation is one of the
causes of the setbacks observed sometimes in tunnelling through squeezing rock [1]. As
long as the reasons for the variability are not identified and understood, the tunnelling-
induced convergences cannot be predicted with sufficient reliability. Reliable predictions,
however, are important for determining the temporary support or the excavation diameter.
Otherwise, large-scale tunnel repairs may be necessary, which can cause, as may be seen
for example in the southern section of the Gotthard Base Tunnel [8], delay and extra costs
due to remedial actions as well as due to the enforced interruption of other operations in
progress at the same time. For reviews on the problem and the mechanics of squeezing in
tunnelling see Kovari [1] and Barla [9].

The 57 km long Gotthard Base Tunnel is the core of the AlpTransit project [10]. The project
offers the possibility of moving the majority of the goods traffic crossing the Alps from road
to rail and guarantees the connection of Switzerland to the European high-speed railway
network for passenger traffic. The tunnel crosses the Aare massif, the Tavetsch-Massif,
the Gotthard massif and the penninic gneiss zone (cf. [11]) from north to south. These
tectonic units consist predominantly of granites, gneisses and schists [10]. The present
section focuses on the Clavaniev Zone (abbreviated to CZ, cf. [11]) and on the Intermediate
Tavetsch-Massif (abbreviated to TZM, cf. [11]), where heavily squeezing conditions were
expected in the planning phase and also encountered during construction.

The aim of this chapter is to identify factors that have a significant influence on the
convergences and might be used as indicators during construction for the timely
identification of squeezing conditions. The chapter starts with a concise overview of the
available data concerning the geology, the excavation and support and the rock response
to tunnelling (Sections 2.1.2 to 2.1.4) and then seeks for empirical correlations between the
deformations observed during construction and the lithological and structural features of
the rock mass (Section 2.1.5). The analysed tunnel section crosses the northern TZM and
the Clavaniev Zone, hereafter referred to as “Sedrun North” (cf. [11]), and includes both
the northwestern and northeastern tubes. The two tubes are separated by a centreline
distance of 50 to 70 m. Section 2.1.5 demonstrates that the observed convergence
correlates reasonably well with the degree of shearing and the schistosity orientation of the
rock. In addition, Section 2.1.5 discusses the effect of nearby zones of more or less
competent rock ([12], [13]) as well as the usefulness of the displacement vector orientation
for predictions [14]. Finally, Section 2.1.6 checks the predictive capability of the empirical
correlations obtained in Section 2.1.5 by calibrating them, based on the observations in a
part of the tunnel, applying them to the remaining stretch of tunnel and comparing the
empirical predictions with the measured deformations. Section 2.1.6 shows that the
comparison is satisfactory and concludes that the empirical relationships in combination
with advance probing are in fact very useful for estimating the squeezing intensity ahead
of the tunnel face.

The present chapter is closely related to the work of Cantieni et al. [15], which examined
the possibility of predicting ground response to tunnelling on the basis of the axial extrusion
of the core ahead of the face. Cantieni et al. [15] also analysed the monitoring data from

This chapter has been published in: Mezger, F., Anagnostou, G., Ziegler, H. J. (2013). The excavation-
induced convergences in the Sedrun section of the Gotthard Base Tunnel. Tunnelling and Underground
Space Technology, Vol. 38: 447-463.

November 2019 31



21.2

32

1664 | On the variability of squeezing behaviour in tunnelling

the construction of the western tube of the Gotthard Base Tunnel. However, Cantieni et al.
[15] could not find a clear correlation that would allow them to predict convergences with
sufficient reliability on the basis of extrusion monitoring alone and proposed evaluating
extrusion data in combination with other information, such as advance probing.

Geology

The Gotthard Base Tunnel crosses the Clavaniev Zone and the northern TZM over a length
of 285 m and 793 m, respectively. The depth of cover is about 800 m. The tectonic units
consist of different rock types: Gneisses alternate with steeply inclined layers composed of
soft phyllites and schists, which have a thickness in the range of decimetres to decametres
[10]. The major part of these units consists of so-called kakiritic rocks, i.e. rocks that are
systematically interspersed with shear planes filled with rock fragments (fault breccia) or
more finely ground material (fault gouge). In general, the term “kakirite” denotes “a broken
or intensively sheared rock, which has lost a large part of its original strength” [16].
Vogelhuber [17] and Anagnostou et al. [18] performed a total of 112 consolidated drained
and undrained triaxial tests to obtain the strength parameters of the kakiritic rocks in the
Sedrun section. Depending on the development of the failure surface, a distinction is made
between anisotropic and isotropic failure to evaluate the strength parameters. Anisotropic
failure occurs when the failure surface develops through the existing discontinuity, e.g.
through a plane of schistosity. Figure 2.1 shows the strength parameters determined from
triaxial tests. The friction angles are between 25 and 30° and the cohesion-values between
200 and 600 kPa. Figure 2.1 considers only samples with isotropic failure. In the case of
anisotropic failure, the friction angle was about 25° and the cohesion-values were mostly
below 200 kPa.
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Figure 2.1. Cohesion c and angle of internal friction ¢ of samples with isotropic failure (after

[18]).

The Clavaniev Zone is located at the southern boundary of the Aare massif and was
intensively sheared and strongly deformed tectonically during the alpine orogeny [16]. The
degree of kakiritization is variable. About 67% of the rocks in the northern TZM and over
95% of the rocks in the Clavaniev Zone may be designated as kakirites. The rest of the
gneisses and slates are at least interspersed with irregular hairline cracks. The weak,
kakiritic rocks in the encountered section of the tunnel are saturated but have a very low
permeability (k = 10® m/s to 10"'° m/s according to [17]).

The following section provides an overview of the available information on the encountered
geology based on the data in the integrated web platform of the Gotthard Base Tunnel
project [19] and the synthesis report by Guntli and Weber [20]. Some lithologic and
structural characteristics of the rock (lithological type, degree of shearing and schistosity),
which were deemed to be important for its response to tunnelling, have been codified using
project-specific classifications, which are presented in Figures 4 to 8 of [5] and are
discussed below.
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Table 2.1. Rock mass classification on the basis of the degree of shearing F (after [20]).

Degree of shearing F  Description

Competent

Sporadic shear fractures, slickensides

1
2
3 Schistous and laminated rocks, mylonites, phyllites
4

Sheared, fractured rocks (portion of rock flour <10%, disturbed over <25% of the
tunnel face surface)

5 Sheared, crumbly, friable rocks (portion of rock flour 10-30%, disturbed over >25%
of the tunnel face surface)

6 Rocks with a portion of rock flour >30% and plastic consistency. It can be deformed
by hand and disturbed over the majority of the tunnel face surface.

local folding
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Figure 2.2. Geological mappings of the tunnel face with traces of the schistosity planes.
(a) NW tube, chainage 15635 m; (b) NE tube, chainage 1202 m (after [20]).

During advance, the ground was classified into rock types based upon both the lithology
and the degree of shearing F, which was introduced as a project-specific measure of the
tectonic disturbance of the rock mass. Six classes for the degree of shearing were defined
(Table 2.1) according to the fraction of rock powder, resulting from the failure of the rocks
during their tectonic overstressing in the geologic past. The lithological types T are
presented in Table 2.2. The quality of the intact rock (on the scale of a specimen) decreases
from lithological type 1 (which includes the strongest units, such as amphibolites or
quartzites) to lithological type 9 (completely kakiritized, fine grained material). The last two
types in Table 2.2 do not represent lithological types in the narrow sense, but have been
included because heavily sheared rocks on account of their nature (almost engineering
soil) can be seen as another lithological type.

The discontinuities of the rock were recorded during tunnel advance both with respect to
the surfaces of schistosity and to the jointing. During advance it became evident that the
degree of shearing F and the lithological type T are somehow connected with one other: in
general, the higher the rock quality on the specimen scale, the smaller the degree of
shearing.

The alpine schistosity is clearly recognizable over major portions of Sedrun North and this
even in strongly kakiritic reaches [20]. In general, the strata dip steeply towards the north
but are strongly disturbed by more recent shearing deformations. In fault zones, the
intensive shearing (kakiritization) governs the behaviour of the rock mass.

However, since this shearing did not lead to a complete homogenization of the rock mass,
the older rock structure between these shear zones has been preserved [20]. Thus,
schistosity is still an important structural feature of the rock in the present case (Fig. 2.2).
The so-called “schistosity influence factor” presented in Figures 4c to 8c in [5] is introduced
in Section 2.1.5.2. It accounts for the orientation of the schistosity planes and combines
their dip angle and dip direction in a single number.
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Figure 2.3. Longitudinal section and cross section of the yielding support system (after
[21]) and sequence of applying the support: 1: Excavation, 2: Sealing of the working area,

3: Installation of the steel ribs, 4: Installation of the radial bolts, 5: Application of the
shoftcrete ring.

Depending on the thickness of the beds, which were developed as a result of the
schistosity, the rock mass was classified into classes from “schistous to phyllitic” (thickness
< 0.5 cm) to “not bedded” (thickness > 100 cm). Over 40% to 50% of the tunnel in the

northern TZM and the Clavaniev Zone was assigned to the class “schistous to phyllitic”
[20].

As a consequence of the kakiritization of the rock and of the schistosity, the development
of jointing was small. Only in the weakly kakiritized rock were small joints or hairline cracks

present. The jointing in the TZM and the Clavaniev Zone was described as small for more
than 72% of the tunnel length [20].

Table 2.2. Rock mass classification on the basis of the lithology (after [20]).
Lithological type T Description

Pegmatites, amphibolites, quartzites

Quartz- and feldspar-rich gneisses, migmatites

Striped gneisses

Gneisses with a high content of mica, dolomites

Gneisses with a high content of schists
Schists
Phyllites

Kakirites (fault gouge)

Ol N[l |h|wWwW | N~

Kakirites with high plasticity and high percentage of fines

Construction Method

Due to the known presence and poor mechanical characteristics of kakiritic rocks, heavily
squeezing conditions were expected for Sedrun North. Therefore, a circular tunnel cross-
section in combination with full-face excavation and yielding support was chosen (Figs. 2.3
and 2.4a). The basic idea behind this concept has been explained by Kovari [1]: Full-face
excavation makes it possible to have a statically favourable profile right from the start. The
yielding support, which consists of sliding steel ribs connected by friction loops (Fig. 2.4b),
reduces the rock pressure to a manageable level [22]. With this method, deformations could
occur, while providing continuous support of the rock. An over-excavation of 0.1 to 0.7 m
(in radius) was foreseen in order to accommodate the convergences without impairing the
necessary clearance profile. The steel ribs used were TH 44/70. In heavily squeezing rock,
the steel ribs were spaced at 0.33 — 0.66 m, which leads to a steel quantity of up to 9.4
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tons per linear metre [10]. Additionally, fully grouted bolts with a length of 8 to 12 m were
installed (Fig. 2.3).

(a) (b) o bl |

Figure 2.4. (a) Tunnelling works at chainage 2155.5 m (from [19]); (b) Support detail with
steel ribs and friction loops (from [19]).

After the rate of convergence slowed down a 0.3 to 0.6 m thick shotcrete ring was applied.
This was usually at a distance of about 30 m behind the tunnel face (approximately 1 month
after excavation). In less squeezing ground, a stiff support was installed right from the start
according to the so-called resistance principle [1].

To ensure stability of the tunnel face the ground ahead of the tunnel face was reinforced
using 40 to 60 12 m-long steel bolts and steel fibre-reinforced shotcrete was applied to the
face immediately after each excavation step. Additionally, systematic forepoling was used
to prevent rock loosening and rock fall.

Table 2.3. Definition of the support classes applied in Sedrun North (after [20]).

Support class SA23 SA 4.1 SA 4.1+ SA 4.2 SA 4.2+
Excavated radius [m] 4.70 5.14 5.69 5.69 6.24
Over-excavation [cm] 10 30 50 50 70
Length of round [m] 1-2 1-1.5 1-1.34 1.34 1
Type of steel ribs [-] TH 29/70 TH 44/70

Sliding resistance [kN] 4 friction loops x 100 kN = 400 kN per connection

Spacing of steel ribs [m] 1.0-2.0 115  067-134 0.67 0'331’0667 -
Radial bolts, type [-] @ 25 mm, 320 kN, S500

Radial bolts, length [m] 6 6-8 8 8-12 8-12
Radial bolts, quantity [-] 13-14 17-28 17-28 11-25 28
Face bolts, length [m] 12 12 12-18 12 12-18
Face bolts, quantity [-] 40 40 50 50 60
Forepoling, length [m] 8 6 6-8 6 6
Forepoling, quantity [-] 0-25 25-30 0-51 If required  If required
Thickness of the shotcrete ring [cm] 20-25 25-30 25-30 25-30 25-60
Thickness of the concrete lining [cm] 30 30 30 60 60
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Figure 2.5. Distribution of the applied support classes along the tunnel (after [20]).

Table 2.3 and Figure 2.5 show the definition of the applied support classes, their distribution
along the tunnel as well as the sequence of applying the support. The determination of the
temporary support and of the excavation diameter during construction was based on the
results of design calculations, the experience gained with the rock and support behaviour
from the already excavated tunnel section and the findings from advance core borings.
More specifically, 28 horizontal advance core borings of lengths between 31 m to 196 m
were carried out during tunnel construction in order to explore the prevailing rock conditions
ahead of the tunnel face and to obtain rock samples for triaxial testing [18]. Figure 2.6
shows, for example, the estimated degree of kakiritization based on the obtained core
(bottom of Fig. 2.6) as well as the encountered degree of shearing F after excavation (top
of Fig. 2.6). Figure 2.6 shows that the shearing degree can be estimated on the basis of
advance core drilling but is still subject to some uncertainty.

reet "I_H_I—L\_
4 <— direction of advance
[ L
ST TIIN

1750 1730 1710 1690 1670 1650
Chainage [m]

competent gneisses, gneisses and schists, kakirites no core
partly schistous moderately to strongly kakiritized recovery

Figure 2.6. Comparison of the borehole findings (degree of Kakiritization) with the
encountered geology (degree of shearing F) of the chainage 1650 m to 1750 m of the NW
tube (evaluation based upon the data from [19] and [20]).

Rock response to tunnelling

In order to observe the behaviour of the rock and check the effectiveness of the tunnel
support, a monitoring system with 3D optical measurements, radial extensometers,
reverse-head-extensometers (RH-extensometers, [23]) and measuring anchors was
implemented.

— The convergences of the tunnel boundary during tunnel advance were monitored
optically at monitoring stations spaced every 5 m to 20 m. Each monitoring station had
5 or 7 measuring points (Fig. 2.7). The displacements were measured at 165 monitoring
stations in the NE tube and in 163 monitoring stations in the NW tube.

— 5 monitoring stations were instrumented with up to 5 radial extensometers of length
4 — 25 m to determine the extent of the rock zone around the tunnel affected by the
excavation and thus the underlying rock deformation mechanism of the observed
convergences. In some cases the measuring head was destroyed due to the large rock
deformations so that no measurements were possible.

— Todetermine the load on the radial anchors, 4 m long measuring anchors were installed
in 2 monitoring stations.
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— The RH-extensometers served to observe the extrusion of the tunnel face as well as
the axial deformation of the core ahead of the face.

Figure 2.7. Monitoring station with 5 (numbers with apostrophes) or 7 measuring points
(numbers without apostrophes).

The optical measurements were the most important means of observing the behaviour of
the tunnel since they were installed frequently and systematically in contrast to the other
measurements. For this reason, the present chapter analyses only the optical
measurements (Sections 2.1.5 and 2.1.6). The results of the RH-extensometers have
already been discussed by Cantieni et al. [15].

Figure 2.8a illustrates the typical development of the convergence. The diagram shows the
vertical displacement ur7 of the crown (normalized by its value ur,1,- far behind the face) as
a function of the distance to the tunnel face dr. Each curve of the diagram corresponds to
a different monitoring station. It is readily seen that the biggest portion of the convergence
took place within two tunnel diameters behind the face and that significant long-term
deformations (which were initially feared) did not occur [24]. The figure also shows that the
shotcrete ring (which was applied at a distance of about 30 m behind the face) almost
stopped the displacements.

Water inflows occurred only in the gneiss and weakly kakiritized sections of the formations,
where hairline cracks allowed some water circulation. In the core boreholes small water
quantities between <0.1 I/s (dripping water) and 0.3 I/s were measured [20].

The main phenomenon observed in Sedrun North was squeezing [20]. Rock falls, which
could also occur due to the presence of schistosity and kakiritization, hardly occurred at all.

During tunnel advance of the Sedrun section no mutual influence between the two tubes
regarding deformations could be detected [20]. The reason seems to be that the two tubes
were excavated almost simultaneously.
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Figure 2.8. Vertical displacement ur1 of the crown (measuring point 1 of Fig. 2.7)
normalized by its value ur,1,- far behind the face as a function of the distance to the face dr
for different monitoring stations of the NE tube, (a), large scale, (b), detail of the first 10 m
of dr.
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Data Analysis
21.51 Convergences

Following Cantieni et al. [15], the present analysis of the monitoring data always takes into
account the same portion of the measured displacement at each monitoring station: In
order to ensure comparability among the monitoring stations, only the displacement that
develops as the face moves from a distance of 5 m to a distance of 30 m ahead of the
monitoring station, is considered. Cantieni et al. [15] decided to consider this interval
because the zero readings of the monitoring stations were made at various locations, but
latest 5 m behind the face (see Fig. 2.8b), while the shotcrete ring (which practically stops
deformations) was applied at a distance of about 30 m from the face. Due to the choice of
this interval, a certain fraction of each displacement cannot be considered for evaluation,
especially in the first 5 m ahead of the monitoring station.

NW NE NW NE

(@) (b)

<+—o 4—o
20cm 20cm

Figure 2.9. Distribution of the displacements over the cross-section, (a), for the NW tube,
chainage 1535 m and, (b), for the NE tube, chainage 1202 m (based upon the data from
[19] and [20]).

It should be noted that in general the displacements were not distributed uniformly over the
cross-section (see examples of Fig. 2.9). The non-uniformity is partially due to the overall
anisotropy of the rock mass (cf. [25]) which is based on local structural rock features such
as quartz inclusions or local schistosity orientation changes.

In order to reduce these effects, the following analysis of the monitoring data considers the
average values of the measuring points of each monitoring station rather than the
magnitude of single displacement vectors. Hereafter an overscore (e.g., U) is used to
denote the average value of u over all the measuring points of a monitoring station.

Figure 2.10 shows the distribution along the tunnel of the magnitude of the displacement
vector U, the magnitude of the projection u, of the displacement vector in the cross-
sectional plane of the tunnel as well as of the radial displacement u, (averaged over each
monitoring station as mentioned above). The difference between all these displacement
values is small, which indicates that the main component of the displacement vector is the
radial one. In the following analysis only the average magnitude of the displacement vector
in the cross-sectional plane of the tunnel U, which is referred to hereafter as “the average
displacement”, is considered.

For dimensional reasons, the displacements of a structure increase linearly with its size, all
other parameters being constant. In the present case the excavated cross-sectional area
varies from 69.4 m? to 122.3 m2. In order to eliminate the effect of opening size in the
evaluation of the monitoring data, the displacements will be normalized by the radius of the
relevant monitoring station (4.7 to 6.24 m).

To determine the factors influencing the convergences, only factors that are variable over
the length of the examined section of the tunnel can be analysed. The monitoring stations
were located mostly in tunnel sections with support classes 4.1, 4.2 and variations thereof
(marked with a “+” in Table 2.3 and Fig. 2.5).

Support differences can be neglected in the evaluation of the convergences for the
following reason: The deformations occur practically only during the yielding phase of the
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support, i.e. up to the application of the shotcrete lining. The support pressure during the
yielding phase is provided by the frictional resistance of the sliding connections and is very
low (in relation to the initial stress) for all support classes in this section of the Gotthard
Base Tunnel. Thus the differences between the support classes are small during the
yielding phase. Closely spaced steel ribs, however, provide a higher safety against rock
loosening. The support classes are also different with respect to the over-excavation. This
difference can easily be taken into account by normalizing the displacements.
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Figure 2.10. Definition of the displacement components and the magnitude of the
displacement vector, of its projection in the cross-sectional plane and of the radial
displacement along the tunnel (values averaged over every monitoring station).

As mentioned above, the tectonic units in Sedrun North consist of alternating layers of
different permeability. The hard rock is often fractured and has a higher permeability than
the weak rock, which was sheared and therefore consists largely of rock powder. In a
saturated rock the permeability governs the rate of the deformations associated with the
dissipation of excess pore pressures. Permeability variations may therefore lead to variable
squeezing intensities [15]. However, the effect of pore water pressure was not considered
in the data evaluation because it was not possible to measure the pore pressure in situ (the
permeability of the ground was very low) and the macroscopic observations did not indicate
the existence of significant differences along the considered tunnel section with respect to
water.

During construction in Sedrun North it was observed that both the degree of shearing of
the rock and the schistosity orientation had a strong effect on the convergences. Due to
the kakiritization, the jointing and the thickness of the beds are only of secondary
importance for the development of the convergences. As the degree of shearing and the
lithological type are related, only the degree of shearing is used for the evaluation of the
data. The following two sections therefore deal with the effects of schistosity orientation
and degree of shearing.
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2.1.5.2 Schistosity orientation

The effect of schistosity orientation on convergences is well known from the literature (e.g.,
[25], [26], [27]). Planes of weakness may affect rock behaviour adversely, particularly if
their strike direction forms a small angle with (or is parallel to) the tunnel axis (Fig. 2.11,
cases B, C and D). The anisotropy due to bedding or schistosity may also cause
asymmetric deformations of the profile. The anisotropy is irrelevant if the tunnel crosses
the schistosity or bedding planes perpendicularly (Fig. 2.11, case A). The orientation of the
schistosity, i.e. its angle 6s to the tunnel axis as well as its dip angle ws are thus potentially
important factors for the deformations.

A: B: C: D:
L;é ) @
!
ws=90° ws=0° ws=45° ws=90°
\ v J
0.=90° 0. 08:=0°

Figure 2.11. Typical cases of schistosity dip angle ws and the angle 6s between strike
direction and tunnel axis.

In the present case, the angles 6s and ws have been determined at all monitoring stations
based upon the geological mappings (e.g., Fig. 2.2a) of Guntli and Weber [20]. Local
folding, as in Figure 2.2b, was not taken into account. Figure 2.12 shows the average
displacements as a function of the dip ws and of the orientation of the schistosity to the
tunnel axis 6s. In order to eliminate the effects of other factors (lithology, degree of shearing,
etc.), Figure 2.12 includes only the data from monitoring stations in rock with a degree of
shearing F of 4. Figure 2.12 illustrates clearly that a small dip angle or a small angle
between the schistosity strike direction and the tunnel axis is associated with larger
deformations (cf. cases B to D in Fig. 2.11), while a large dip angle and a large angle
between the strike direction and the tunnel axis leads to smaller deformations (cf. case A
in Fig. 2.11).

0.05 asgoel
0.04 '
= 0.03
(]
S 0.02
0.01

Figure 2.12. Average normalized displacement u_/a as a function of the dip angle ws and
the angle 6s between the schistosity strike direction and tunnel axis.

These two angles, which determine schistosity orientation, are important for the
convergences. They can be combined to obtain a “schistosity influence factor S”, that is
defined as follows:

o, 0
S=1-—=-—= 0,1] . 2.1
90 90 € [0,1] (2.1)
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The idea behind this definition is that the influence factor S is zero, if the schistosity
influence disappears (i.e. when the schistosity planes are perpendicular to the tunnel axis),
and is 1, if the schistosity influence is maximum (i.e. when the schistosity planes are
horizontal or strike parallel to the tunnel axis). The 3D diagram in Figure 2.13 shows the
schistosity influence factor S as a function of the two angles. A similarity can be recognized
between the S versus (6s, ws) diagram (Fig. 2.13) and the measured displacement versus
(Bs, ws) diagram (Fig. 2.12).

The diagrams (c) in Figures 4 to 8 of [5] show the schistosity influence factor determined
in this way along the tunnel. The diagrams also include the average displacements for the
purpose of comparison. In general, the larger the schistosity influence factor S, the larger
the displacements. This is particularly evident from Figure 7 of [5] (diagrams for NE tube)
for a tunnel reach with a constant degree of shearing: The large variability of the
convergences in this case is solely due to the change of the schistosity orientation, which
is adequately expressed by the schistosity influence factor S.

The notion of the schistosity influence factor will be revisited in Section 5.1, where its
theoretical background will be shown, and in Section 5.2.5, which investigates if the
measured displacements can also be reproduced by means of numerical calculations.
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Figure 2.13. Schistosity influence factor S as a function of the schistosity dip angle ws and
the angle 6s between strike direction and tunnel axis (points marked by A, B, C and D: see
Fig. 2.11).

21.5.3 Combined effect of schistosity orientation and shearing degree

Figures 4 to 8 of [5] indicate that besides an unfavourable orientation of the schistosity
(characterized by high values of the factor S) a higher degree of shearing also leads in
general to larger displacements. The combined effect of rock shearing and schistosity
orientation can be expressed by the product of the schistosity orientation factor S with the
degree of shearing F (normalized by the maximum degree of shearing F of 6 in order to
obtain a factor between 0 and 1):

F
h=Sg <[o1]. (2.2)

This product will hereafter be referred to as “influence factor of the rock”. Figure 2.14 shows
the average displacements as a function of this factor for all monitoring stations. A linear
regression model was fitted using the least squares approach with the aim of quantifying
the quality of the relationship between the rock influence factor /= and the normalized
average displacements and, in the case of a satisfactory relationship, to fit an empirical
equation that could be used to predict convergence. According to the regression analysis,

Y _pi,, (2.3)
a
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in which the proportionality constant = 0.052, while the R-squared coefficient of
determination is 0.75 indicating an acceptable fit of the regression.

e/ a [

Figure 2.14. Normalized displacement u,/a as a function of the influence factor of the rock
Ir.

Figure 2.15 shows the measured average displacements (dashed lines) as well as the
calculated average displacements according to Equation (2.3) over the entire length of the
two tubes. The average difference between measured and calculated average
displacements amounts to only 2.4 cm and the standard deviation to 2.0 cm. Thus the
agreement between observed and fitted data is satisfactory.
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Figure 2.15. Calculated and measured displacement u_along the tunnel.

21.54 Influence of adjacent weaker or stronger zones

The Sedrun North formations consist predominately of rock zones that have a degree of
shearing F of 4 and are interrupted by shorter zones with more or less competent rock.
Based on theoretical considerations, the deformations when tunnelling through
heterogeneous ground depend not only on the quality of the ground at each specific
location, but also on the quality of the ground in its vicinity [12]. More specifically, a
longitudinal arching effect develops, which is favourable for the weak zones, but leads to
an additional loading of the competent rock layers and therefore to higher displacements
[13].

In order to check the validity of these theoretical considerations, the following “vicinity

influence factor /v’ is introduced as a measure of the effect of adjacent weaker or stronger
zones:

, _R-FL
v F d

in which Fv, Ly and d denote the degree of shearing, the thickness and the distance of the
closest zone to the considered monitoring station (Fig. 2.16), while F is the degree of

, (2.4)
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shearing at the considered monitoring station. This definition assumes that only the closest
zone has an influence (Fig. 2.16). The structure of Equation (2.4) is based on plausibility
considerations: The thicker this nearby zone and the closer it is to the considered
monitoring station, the higher is the absolute value of the vicinity influence factor. The
quotient (Fv-F)/F represents a measure of the relative difference of the rock quality between
the considered monitoring station and the nearby zone. If the nearby zone exhibits a higher
degree of shearing, this quotient (and consequently also the vicinity influence factor /v) will
be positive, otherwise they will be negative. In the first case (positive Iv), one would expect
that the convergences would be higher than without the nearby zone. In the second case
(negative Iv), one would expect that the nearby more competent zone would have a
stabilizing effect (reduction of the convergence in the monitoring station).

Figure 2.17 shows the normalized displacements as a function of the influence factor of the
rock Ir for negative and positive values of the vicinity influence factor Iv. The black circles
apply to Iv < 0, i.e. to monitoring stations that are placed close to more competent rock
zones. The black circles are located mainly at the lower part of the cluster of points, which
means that the convergences at these monitoring stations are in general lower than
average.

considered—1A
Nitoring station

d Lv
I f f f !
zone  zone containing the closest zone not
not  considered monitoring zone taken
taken station into account

into
account
(shearing degree F)  (shearing
degree
Fv)

Figure 2.16. Longitudinal section with parameters considered in the definition of the vicinity
influence factor.

06 0.8 1
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Figure 2.17. Normalized displacement u,/a as a function of the influence factor of the rock
Ir for negative and positive vicinity influence factors lv.

Figure 2.18 considers only the monitoring stations with positive vicinity influence factors,
i.e. monitoring stations which are close to weaker zones. As mentioned above, one would
expect in this case that the nearby weak zone has an unfavourable effect, i.e. it leads to
higher convergences; the higher the vicinity influence factor, the more pronounced this
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effect should be. In fact, the data shows just this tendency: The white circles, which
correspond to higher vicinity factors, are located in the upper region of the cluster of points.

In conclusion, Figures 2.17 and 2.18 support qualitatively the hypothesis that weaker or
stronger zones in the vicinity have a significant effect on convergence at a specific
monitoring station. Nevertheless, the large scatter does not allow one to formulate a
reasonable quantitative relationship. A consideration of the schistosity in the closest zone
might lead to better results, but was not considered in this chapter due to the difficulty of
defining the zone boundaries when considering the schistosity. For these reasons, the
empirical equation (2.3) was not developed further. As can be seen from Figure 2.15,
Equation (2.3), which considers the degree of shearing and the orientation of the schistosity
at each specific location, still provides a reasonably good approximation of the
convergences.

A point that should be borne in mind, when evaluating the monitoring results, concerns the
spatial resolution of the measured displacements. According to the theoretical results of
Cantieni and Anagnostou [13], the convergences may vary significantly even over very
short distances (on the order of the spacing of the monitoring stations), if the geology
consists of alternating layers of weak and hard rock. As a result of this variability the
displacements may not be completely monitored when the distance between the monitoring
stations is large; the displacements at a monitoring station may be representative only for
the close vicinity of the monitoring station.
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Figure 2.18. Normalized displacement u_/a as a function of the influence factor of the rock
Ir for low and high positive vicinity influence factors lv.

21.5.5 The longitudinal component of displacement

According to Steindorfer [14], the direction of the longitudinal component of the
displacement vector, i.e. the sign of the angle « (see top of Figure 2.10) changes when the
tunnel face approaches a weaker or a stronger rock zone. More specifically, when the
excavation approaches a “stiffer” zone the displacement vectors tend to point in the
direction of excavation (a < 0). Shortly after the excavation enters the “stiffer” rock, the
vector orientation shows the opposite tendency (« > 0), i.e. an increasing trend against the
direction of excavation [14]. These observations suggest that one might be able to predict
the rock behaviour ahead of the tunnel face by evaluating the changes of the displacement
vector orientation.

The data from Sedrun North supports, to some extent and under certain conditions,
Steindorfer's hypothesis. Figure 2.19 shows the angle a of the crown displacement (i.e.,
measuring point 1 in Fig. 2.7) and the degree of shearing F along two reaches. Only the
displacements were considered that developed as the distance between the tunnel face
and monitoring station increased from 5 m to 10 m (i.e., one tunnel diameter). In the first
reach, the displacement orientation changes correlate with the actual rock mass quality
changes. In the second reach, however, the displacement vector orientation varies
although the degree of shearing of the rock mass is constant. The reason for this behaviour
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seems to be the schistosity orientation, which is almost constant in the first case (cf. Fig. 4
of [5]), but varies considerably in the second case (Figs. 7 and 8 of [5]) and influences the
orientation of the displacement vectors. Therefore, longitudinal displacements alone do not
permit a reliable prediction of the conditions ahead of the face.
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Figure 2.19. Angle a and degree of shearing F along two reaches of the NW tube.

Predictive capacity of the empirical equation

This section investigates whether the empirical equation (2.3) derived in the last section
could be used to predict the convergences. As mentioned above, Eq. (2.3) accounts for the
degree of shearing and the schistosity orientation. It is clear that this equation can be used
for predictions only if all other possible influence factors, which were not considered for
developing this equation, are identical.
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Figure 2.20. Displacement prediction for Sedrun North by means of the empirical equation
(2.3), calibrated based upon the monitoring data from the first 100 tunnel metres.

Furthermore, the use of Equation (2.3) presupposes that the input parameters (degree of
shearing and the schistosity orientation) can be identified in advance. This information can
be obtained by means of advance probing. In fact, during the construction of the Gotthard
Base Tunnel the degree of kakiritization was estimated by means of the optical inspection
of the cores (cf., e.g., Figure 2.6). An optical borehole scanner can be used to detect the
structures at the borehole walls. Thereby the dip angle and the orientation of the schistosity
relative to the tunnel axis can be determined with an accuracy of about half a degree. The
only difficulty could be the estimation of the orientation of the schistosity in the case of an
intense orientation variation in the cross-section. The optical borehole scanner can only be
used if the borehole is sufficiently stable. Otherwise, the determination of the orientation of
the schistosity is obtained from borehole findings and the orientation of the drill axis of the
boring connected with a reorientation during excavation.

Finally, the use of Equation (2.3) presupposes calibration of this equation on the basis of
project-specific information. For this purpose two tests were carried out.
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In the first test, Equation (2.3) was calibrated based on the observations made up to the
18th of March 2005, i.e. during the first 100 m of advance in Sedrun North, and used the
calibrated equation in order to predict the deformations in the remaining part of Sedrun
North. The calibration over the first 100 m gave a correlation factor 8 of 0.051, which is
almost equal to the correlation factor for the entire data set (0.052, see Section 2.1.5.3).
As a result, the predicted convergence agrees well with the measured values (Fig. 2.20),
which means that such an empirical approach would be useful in the present case. The
agreement between predicted and actual convergence would probably be poorer in reality
due to the uncertainties that exist with respect to the estimation of the input values (degree
of shearing, schistosity orientation) on the basis of advance core drilling.
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Figure 2.21. Displacement prediction for Sedrun South by means of the empirical equation
(2.3), calibrated based upon the monitoring data from Sedrun North.

In the second test, the convergences in Sedrun South (Fig. 2.12) are predicted by using
Equation (2.3). The only difference between Sedrun North and South is the overburden,
which is about twice as large in Sedrun South (1650 m compared to about 800 m in Sedrun
North). For the prediction of the displacements in Sedrun South Equation (2.3) was
calibrated based upon the data from Sedrun North and applied the calibrated equation to
predict the convergences in Sedrun South (Fig. 2.12). The difference in overburden is not
taken into account. Figure 2.21 shows the predicted and the actual displacement. Their
average and maximum difference amount to 1.5cm and 5 cm, respectively. The
comparison with Figure 2.21 shows that the empirical equation from Sedrun North slightly
underestimates the convergence, particularly in the weaker zones around chainage 4300
and 4500 m (perhaps due to the higher overburden). However, the equation is still reliable
for estimating the order of magnitude of the convergences.

Conclusions

The case history of the Gotthard Base Tunnel shows that the frequently observed
phenomenon of squeezing variability can be traced back to different degrees of shearing,
different schistosity orientations and the effect of nearby weaker or stronger zones. A
simple empirical equation can map the effect of shearing and schistosity reasonably well
and provides, in combination with advance core drilling, reliable indications of the
squeezing intensity. The longitudinal displacement of the tunnel boundary [14] or the
extrusion of the core ahead of the tunnel face [15] may provide additional indications under
certain conditions (constant orientation of the schistosity, no significant creep,
respectively).
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Giumello Gneiss Section of the Ceneri Base Tunnel?

Introduction

In Section 2.1, the reasons for the variability of rock deformations observed during
construction in the Sedrun section of the Gotthard Base Tunnel, where heavy squeezing
conditions were encountered, were investigated. It was shown that the variability of the
squeezing intensity along the tunnel could be traced back to a variable degree of tectonic
shearing, variable schistosity orientation with respect to the tunnel axis and the effect of
nearby weaker or stronger zones.

The present section analyses data from the construction of the Ceneri Base Tunnel (a
15.4 km long twin tunnel, which also belongs to the Swiss AlpTransit project) in the
Giumello Gneiss formation (hereafter referred to as “GGium”), which was crossed over a
length of 1000 m in the eastern tube and 600 m in the western tube. Due to the poor rock
quality and the high depth of cover (about 650 m), squeezing was expected from the
planning phase. The deformations in the GGium were, however, higher than those
predicted at the project stage, resulting in localised damage in the shotcrete shell ([28],
[29]). After a brief overview of the available data on the geology (Section 2.2.2), excavation
and support (Section 2.2.3) and rock response to the tunnelling (Section 2.2.4), an attempt
is made to find empirical correlations between rock structure and observed deformations
(Section 2.2.5). In contrast to the Sedrun section of the Gotthard Base Tunnel, where the
alignment crossed the tectonic units almost perpendicularly, in the GGium formation the
schistosity and fault zones lay parallel to the tunnel axis (a so-called “parallelismo zone”).
Squeezing phenomena were therefore less variable along the tunnel. Nevertheless,
squeezing was characterised by a very non-uniform deformation of the tunnel cross-
section. As rock anisotropy is known to lead to non-uniformly distributed deformations of
the profile (cf., e.g., [26], [25], [30], [27] and Chapter 4 of the present research project),
particular attention is paid here to the examination of the influence of schistosity on the
convergences.

Geology

The Ceneri Base Tunnel is situated in the crystalline bedrock of the Southern Alps [29].
The GGium is heterogeneous, consisting of different geological rock layers [28]. Although
the rock formations have retained their original pre-alpine structure, they were affected by
the orogeny, thus forming disturbed areas of cataclastic and kakiritic fault zones [31]. The
GGium consists of gneisses with a high content of mesocratic schist (comprising 40 to 60%
biotite). The rocks also contain quartz veins a few centimetres thick and calcium silicates
on a scale of decimetres [32]. During advance, the rock was classified lithologically as
follows: Gneisses (with a high content of schist) with medium grains; gneisses (with a high
content of schist) with medium to fine grains; mica-schists with medium grains; and mica-
schists with medium to fine grains (with the rock quality decreasing from the first to the last-
mentioned lithological type, [32]).

Discontinuities in the rock were recorded with respect to schistosity, jointing and fault zones
(Fig. 2.22). The fault zones were 5 to 100 cm thick and ran subparallel to the direction of
excavation [29]. The fault gouge generally exhibited a low cohesion [32]. The fault zones
were classified according to their degree of shearing into the following project-specific
classes: a degree of shearing Z of 1 denotes a superficial, slight shear zone; 2 mylonites;
3 a cataclastic fault zone; 4 a cataclastic-kakiritic fault zone; and 5 a kakiritic fault zone.
Kakirites are intensively sheared rocks.

The main element in the anisotropy of the rock mass was the schistosity. Due to the
direction of advance (ca. 194°), the schistosity planes (oriented in E-ESE) lay parallel to

2 This chapter has been published in: Mezger, F., Anagnostou, G. (2015). On the non-uniformity of

squeezing deformations in the Ceneri Base Tunnel. Schubert, W. & Kluckner, A. (Eds.), ISRM Regional
Symposium EUROCK 2015 & 64th Geomechanics Colloquium, Salzburg, Oesterreich, pp. 113-118.
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the tunnel axis with variable dip ([32], Fig. 2.22). The schistosity was apparent even in the
fault zones, but tended to be locally distorted in the vicinity. The major part of the GGium
was classified with respect to the thickness of the schist beds as “laminated” (0.5 — 5 cm)
or “thinly bedded” (5 — 15 cm, [32]). Due to the small thickness of the beds compared to
the tunnel size, bed thickness had no observable influence on the convergences. The rock
mass was only weakly jointed. Consequently, the jointing is deemed to be of only minor
importance compared to the fault zones and the schistosity. No water inflows occurred [32].
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Figure 2.22. Examples of geological mappings of the tunnel face showing traces of the
schistosity planes and fault zones and measured displacements (see Section 2.2.5, after
[32]): (a), NE tube, chainage 668; (b), NE tube, chainage 614.

Construction method

For the excavation of the Ceneri Base Tunnel, a total of ten support classes (abbreviated
to SPV) were developed. In the GGium only SPVs 3 to 6 were applied. SPV 3 and 4 consist
of radial bolts and fibre-reinforced shotcrete and have no invert arch; SPV 5 and 6 have an
invert arch, radial and face bolts, mesh or fibre-reinforced shotcrete and steel sets (Fig.
2.23, [29]). SPV 3 and SPV 5 differ from SPV 4 and SPV 6, respectively, only in the bolt
length and spacing [32]. SPV 3 contains 4 m long bolts spaced at 1 m x 1.5 m; SPV 4 also
has longer bolts (up to 6 m) spaced at 1.2 m x 1.2 m ([32], [33]).

radial bolts

(a) (b) y
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shotcrete

shotcrete

Figure 2.23. Cross-section and longitudinal section of the support classes (after [32]): (a),
SPV 3; (b), SPV 6.

The centreline distance of the two tubes is equal to 40 m. The tubes were excavated

asynchronously. The NW tube was excavated first. No mutual influence was observed
between the two tubes [32].
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Rock response to tunnelling

The behaviour of the rock mass and the tunnel support was monitored by 3D optical
measurements [32]. In the GGium, 46 monitoring stations were installed, spaced at 2 - 110
m and each containing up to 7 measuring points (i.e. about 240 measuring points in total).
The deformations reached values of up to 40 cm. During excavation through the GGium,
the rock response was found to be clearly affected by the faults and shear zones and by
the schistosity, so that the displacements were distributed non-uniformly over the cross-
section (Fig. 2.22, [29]). Due to the discontinuities, loosening and rock falls also occurred,
mostly in the eastern part of the tunnel roof (overbreak in Fig. 2.22) immediately after
blasting above the unsupported span.

Data analysis

In the following, the magnitude of the projection of the displacement vector is considered
in the cross-sectional plane of the tunnel at every measuring point (and hereafter referred
to as “the displacement”). Measuring points lying in the intersection of the tunnel and the
cross-passages are not taken into account as they are influenced by the complex geometry
of the excavation. In order to ensure comparability between the measuring points, the same
portion of the displacement measured at each measurement point (more specifically, the
difference between the final displacement and the displacement that develops when the
face is located 5 m ahead of the measuring point) is considered. For dimensional reasons,
the displacements in a structure increase linearly with its size, all other parameters being
constant. In this section of the Ceneri Base tunnel, the excavated width b of the tunnel is
9.06 - 9.36 m. In order to eliminate this effect, the displacements are normalised by b/2.
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Figure 2.24. (a) Typical cases of the schistosity angle (8 in the cross-sectional plane of the
tunnel; (b), normalized displacement us/(b/2) as a function of the schistosity angle 8 (data
only from the support classes SPV 3 and 4 and measuring points not lying inside a fault
zone).

In order to investigate the effect of schistosity orientation, the angle B is considered
between the direction of the maximum principal stress (i.e. the tangential stress at the
excavation boundary) and the schistosity planes (hereafter referred to as “the schistosity
angle”, Fig. 2.24a). Figure 2.24b shows the normalised displacement as a function of the
schistosity angle 8 for different lithological types. In order to eliminate the effects of other
factors (support class and fault zones), Figure 2.24b includes only the data from measuring
stations with support classes SPV 3 and 4 (no invert arch) and measuring points that do
not lie inside a fault zone. A distinction between SPV 3 and 4 is not necessary because the
difference in support pressures is small in relation to the initial stress.

The Figure 2.24b shows that the smaller the schistosity angle B, the higher are the
displacements (for a given lithological type). The biggest displacements occur at locations
where the schistosity is almost parallel to the excavation boundary, i.e. to the direction of
the maximum principal stress. The schistosity is consequently at least partly responsible
for the non-uniformity of the deformations in the cross-section.

November 2019 49



2.2.6

2.3

2.3.1

50

1664 | On the variability of squeezing behaviour in tunnelling

Nevertheless, in addition to schistosity, the lithology also has a remarkable influence on
deformation (compare the lithological types A and D in Fig. 2.24b).
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Figure 2.25. (a) Cross-section of the tunnel with the parameters considered for defining
the influence of the fault zone; (b), normalized displacement uc/(b/2) as a function of the
schistosity angle B for measuring points lying in the fault zone and for measuring points
with low and high factors of the fault zone Is (data only from the support classes SPV 3 and
4 and rock consisting of Mica-schists with medium grains).

Another potential influence is associated with the heterogeneity of the rock mass. As shown
in Section 2.1 based upon monitoring results from the Sedrun section of the Gotthard Base
Tunnel, the excavation-induced deformations in heterogeneous ground depend not only on
the quality of the ground at each specific location, but also on the quality of the ground in
the vicinity of the measuring points. The closer a measuring point is to a weak zone and
the weaker and thicker this zone is, the greater will be the displacement. This hypothesis
can be checked empirically by considering the following factor as a measure of the effect
of adjacent fault zones:

L2t

d (2.5)

where Z, t and d denote the degree of shearing in the fault zone (see Section 2.2.2), the
thickness of the fault zone and the distance from the measuring point to the fault zone (see
Fig. 2.25a), respectively (see Section 2.1).

Figure 2.25b shows the normalised displacements as a function of the schistosity angle S,
grouped according to the Is factor (measuring points lying inside fault zones are marked
separately). If several fault zones lie in the vicinity of a measuring point, the fault zone with
the highest influence factor /s was considered for the data evaluation. In order to eliminate
other effects, only cross-sections with the same lithology (mica-schists with medium grains)
and support types SPV 3 or 4 were considered. The black circles, which correspond to
displacements measured at points inside fault zone, are located in the upper region of the
cluster. The white circles, which correspond to small /s factors, are located in the lower
region. Higher influence factors /s correlate with higher convergences.

Conclusions

The case history of the Ceneri Base Tunnel shows that schistosity has a considerable
influence on deformation and is the main reason for the observed non-uniformity in the
profile deformations. In addition to schistosity, the lithological variations and the fault zones
also contributed to the non-uniformity in the deformations.

Carbon Section of the Lotschberg Base Tunnel

Introduction
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From the viewpoint of the geology, the case histories of the Sections 2.1 and 2.2 were
completely different: In contrast to the Sedrun section of the Gotthard Base Tunnel, where
the alignment crossed the tectonic units almost perpendicularly, in the GGium, the
schistosity and the fault zones were oriented parallel to the tunnel axis. In the Sedrun
section, squeezing intensity varied remarkably along the alignment, while in the GGium,
squeezing was characterised by a very non-uniform deformation of the tunnel cross-
section. Nevertheless, both case histories showed that the squeezing deformations were
mainly affected by the lithology, the schistosity and the effect of nearby weaker or stronger
zones.

The goal of this chapter is to confirm these findings based on a third case history: the
autochthon and the carbon sections of the Létschberg Base Tunnel (LBT, Fig. 2.26), a 34.5
km long twin tunnel (whereupon the western tube only serves as rescue tunnel) of the
Swiss AlpTransit project.

[km] 28,0 29,0 30,0 31,0

-

Autochthon

Carbon
BE - VS Raron

35,0

40,0 45,0 49,0

Frutigen

3
[km] 15,0

Figure 2.26. Longitudinal geological profile of the Létschberg Base tunnel.

After the squeezing section of the autochthon (at about km 28’500 to km 29’150) was
crossed (advance from Frutigen, see Fig. 2.26), the engineers assumed that all
constructional difficulties had been overcome and that the remaining tunnel advance in the
Aar massif (at a depth of cover of ca. 1400 m) would take place predominately in granite.
However, in the western tube at about km 29’850, again sedimentary rocks (of the
autochthon and the carbon) were encountered, which had finally a length of about 700 m.
Over a length of 200 m, the schistous carbon rocks turned out to be heavily squeezing,
leading to convergences of up to 70 cm. They were distributed non-uniformly over the
tunnel cross-section, varied strongly along the tunnel, have led to damage to the support
and necessitated considerable tunnel repairs [34]. Even after a considerable distance to
the tunnel face, large long-term (time-dependent) deformations occurred. As long-term
deformations could also be observed in other tunnel constructions, as for example in the
Lyon-Turin Base Tunnel (cf. [35]), investigating the reasons for these long-term
deformations is indispensable. Therefore, this chapter further examines the influence of
lithology and schistosity on the long-term deformations.

The main phenomenon, which was observed during tunnel construction, was squeezing.
However, it turned out that in some sections of the tunnel also swelling phenomena were
noticeable. Figure 2.27 shows, on the one hand, the horizontal convergences Au, which
occurred in the construction phase (i.e., directly after excavation until 2005) and, on the
other hand, the floor deformations ur, which were measured during the monitoring phase
(i.e., after the construction phase in 2006 until 2017).
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Figure 2.27. Horizontal convergences Au (measured during tunnel construction) and floor
deformations ur (measured during monitoring phase) along the tunnel, (a), in the western
tube and, (b), in the eastern tube.

In order to determine if the deformations can be traced back to squeezing or swelling
phenomena, the lithology as well as the development and the location of the occurred
deformations over time have to be analysed. Therefore, in Figure 2.27, besides the
deformations, the lithology is also specified, as swelling phenomena may only occur in
anhydritic clay stones. Furthermore, the development of the occurred deformations over
time in swelling and squeezing rocks differs fundamentally (cf. Fig. 2.28): while the swelling
mechanism needs time to develop over time (and may not subside even after a long time
period), the squeezing deformations occur immediately after tunnelling, while their velocity
decreases with time. Furthermore, in an unsealed tunnel, swelling deformations are only
recognisable in the floor, while squeezing deformations occur along the whole tunnel
boundary.

Figure 2.27 summarises the tunnel sections, where swelling phenomena occur (sections
B, C, F): The areas closest to the crystalline formation (monitoring stations at km29°050,
km29'950 and km30’000 in the western tube as well as km28°'988, km29’025 in the eastern
tube) show a pronounced swelling behaviour. This is particularly evident in Figure 2.27a
(e.g., km29'950 in the western tube), as large portion of deformations occurs in the floor (in
the tunnel reaches lying in the anhydritic clay stones; cf. Fig. 2.27a) and does not take
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place immediately after tunnel construction (but needs time to develop; cf. Fig. 2.28).
Furthermore, Figure 2.27 shows that the floor deformations in the eastern tube are rather
small even in the areas closest to the crystalline formation (compared to those of the
western tube), as an inner lining made of concrete was installed.

western tube at km29950

v [mm/year]

o western tube at km30500

0 > T T T
0 2000 4000 6000

time [d]

Figure 2.28. Floor deformation velocity for two selected monitoring stations (measured
during monitoring phase).

In all the other tunnel sections, squeezing phenomena occurred (cf. Fig. 2.27 sections A,
D, E, G). This research project will only focus on these squeezing tunnel sections. The
largest deformations developed in the carbon section of the LBT between km30’350 to
km30’590 in the western tube (see Fig. 2.27a) and between km30°'320 to km30’545 in the
eastern tube (see Fig. 2.27b).

After a brief overview of the available data on the geological units, the excavation and
support method as well as rock response to tunnelling (Sections 2.3.2 to 2.3.4), an attempt
is made to identify the decisive factors, which are responsible for the squeezing variability,
considering, on the one hand, the short-term behaviour in Section 2.3.5 and, on the other
hand, the long-term behaviour (due to creep) in Section 2.3.6.

Geology

As expected, after having crossed the autochthon section (at about km 28500 to km
29'150), the tunnel encountered the granites belonging to the crystalline formation (at about
km 29'150; cf. Fig. 2.27). After more than 800 m of granite were crossed, the tunnel
encountered unexpectedly sedimentary rocks, which consist of the autochthon and the
carbon rocks [34].

The autochthon rocks can be assigned on the one hand to the Triassic and, on the other
hand, to the Dogger. The Triassic rocks consist of alternating recrystallized anhydrite and
dolomite layers, which can appear in combination with schists and quartz sandstones [36].
The Dogger rocks consist of foliated and sometimes strongly graphitic sandy schists, which
alternate with silt- and sandstones [36].

The carbon rocks (encountered at km 30°200 to km 30°500; cf. Fig. 2.27) consist of a
sequence of alternating layers of sandstones, siltstones, clay slates and layers of anthracite
([34], [37], [38]). One third of the carbon rocks contains thick-bedded sand- and siltstones,
while the remaining two thirds mainly consist of schistous rocks with up to 1 m thick
anthracite layers ([34], [37]). The carbon rocks dip at about 30° in direction of advance [34].
The quartz sandstones (containing 40 — 60% of quartz) are hard, have medium to coarse
grains and form banks of a few centimetres to metres [38]. In some parts of the tunnel, the
siltstones can hardly be distinguished from the sandstones and the schists [38]. The schists
consist of foliated and graphitic clay slates with organic compounds and with smoothly
polished schistosity planes ([38], [39]). The up to 1 m thick anthracite layers have high clay
contents and are always associated with the schists ([36], [38]). In the present chapter, the
schistous rocks with high anthracite content will be referred to anthracite schists (see also
[36]).
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In the autochthon and the carbon sections, the schistosity dips mainly to SE (thus lying
subparallel to the tunnel axis and leading to an angle 8s between the strike direction and
the tunnel axis of ca. 90°, see Fig. 2.29), but can be folded locally ([36], [38]).
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Figure 2.29. Distribution of dip angle ws and the angle 6s between the strike direction of
the schistosity planes and the tunnel axis, and the resulting influence factor of the
schistosity S along the tunnel in the eastern and western tube, respectively.

During tunnel advance, the lithology, the schistosity and the jointing of the tunnel face were
recorded (see Fig. 2.30) and then summarised in a longitudinal map (with less detailed
information). As the tunnel section was already excavated in 2004 and the storing of a huge
amount of data is expensive, some of the geological mappings of the tunnel face are
missing. This makes the analysis of the tunnel difficult, given that the exact location of the
anthracite layers or the orientation change of the schistosity are unknown in some specific
measuring points.

km 30410 km 30430 km 30480

S080/43 o S110/46 ' T 813430
anthracite layers siltstones, partially schistous —— discontinuities
sandstones shotcrete <—— displacement

schists

Figure 2.30. Examples of geological mappings of the tunnel face of the eastern tube
showing the lithology, the traces of the discontinuities and measured displacements utot
(after [37]).

Apart from occasional small water inflows, in the whole autochthon and carbon sections,
the drive was dry ([38], [39]).

Construction Method

Squeezing conditions were anticipated for the autochthon section of the Lotschberg Base
Tunnel (at about km 28’500 to km 29'150; cf. Fig. 2.27) — the design documents included
an appropriate support class foreseeing an invert arch in combination with a full-face
excavation and a yielding support (support class ES6A in Figs. 2.31 and 2.32). The yielding
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support, which consists of sliding steel ribs and 6 longitudinal joints in the shotcrete shell,
reduces the rock pressure to a manageable level [38]. With these joints, convergences of
up to 1 m could be theoretically accommodated without damage to the shotcrete shell [34].

In the non-squeezing sandstones, the support class ES3 (Fig. 2.31) was installed, which
was then also applied when excavating the autochthon rocks (at about km 29’850 to km
30°200; cf. Fig. 2.27). Only after the occurrence of larger convergences in the carbon
section, which required tunnel repairs, the support class ES6A was again installed (from
km 30°390).

ES3 ES6A without invert

15,cm
—

/f \ /
\x‘\\\\‘ "/0/ /
——e ¥

N\ SOK 4 /

8.61m | | 9.10m

ES6A with invert ES6B

Figure 2.31. Support classes for squeezing conditions [34].

In the carbon section from km 30’390 to km 30’470, the support class ES6A was applied in
both tubes. However, several months after excavation, the support was already damaged,
so that considerable tunnel repairs became necessary [34]. As an initial measure,
additional radial bolts with a length of 12 m were installed. However, this measure failed to
reduce the deformation rate [34]. Therefore, a part of the carbon section had to be repaired,
using the support class ES6B [34] with a nearly circular tunnel cross-section (Fig. 2.31).
Furthermore, the support resistance was increased by installing compressible elements in
the longitudinal joints in the shotcrete shell. In the eastern tube the so-called hiDCon
elements [40] were applied, in the western tube the LSC elements [41]. During the repair
works, the support pressure was reduced temporarily, leading thus to an acceleration of
the convergences (see, e.g., increase in convergences ut at distance dr = 53 m of the
tunnel face in Fig. 2.34c, [34]). After these tunnel repairs, the deformations stopped
temporarily (during ca. 6 months), but continued to increase again in the same way, leading
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once again to damage and tunnel repairs. More specifically, the ribs of the tunnel roof had
to be set in a higher position, in order to guarantee the necessary clearance profile [34].

Based on these experiences, the engineers decided to apply the support class ES6B right
from the start in the carbon sections from about km 30’470 to km 30’550. Class ES6B offers
a 50 — 100% higher support pressure [34]. However, damage was observed in some parts
of the tunnel after several months, so that tunnel repairs had to be performed again [34].

Unfortunately, the compressible elements installed in the joints did not behave as expected
in some parts of the tunnel: Due to the heterogeneous rock structure, the deformations
were distributed non-uniformly over the tunnel cross-section, so that some elements
already reached their deformation capacity, while other elements were still uncompressed
[34]. Particularly, the use of the LSC elements was not successful, as the steel cylinders
tipped over and did not buckle [34].

Figure 2.32. Left: Support class ES6A of the L6tschberg Base Tunnel (eastern tube at km
28°759; [36]); right: buckled steel ribs (eastern tube at km 30°421; [37]).

The centreline distance of the two tubes is equal to 40 m. The tubes were excavated
asynchronously, whereas the western tube was excavated first. No mutual influence was
observed between the two tubes (as no increase of the convergences was observed in the
western tube due to the excavation of the eastern tube, see, e.g., Fig. 2.34d).

After excavation was completed, the inner lining was installed in the eastern tube while the
western tube remained in the unfinished state. In order to ensure long-term stability, tunnel
repairs had to be carried out, e.g., the convergence slots were closed and additional
shotcrete along the tunnel boundary was applied in the western tube.

Rock response to tunnelling

The behaviour of the rock mass and the tunnel support was monitored by 3D optical
measurements and extensometers. In the investigated sections only one monitoring station
was instrumented with radial extensometers [36]. However, as this monitoring station was
installed at a distance of about 60 m behind the tunnel face, the extensometer data cannot
be used for the purpose of this research project. The displacements of the tunnel boundary
during tunnel advance were monitored optically at stations spaced at about 10 m, each
usually containing 4 measuring points (cf. Fig. 2.33). The convergences reached locally
about 70 cm. The displacements were clearly affected by the lithology (cf. Fig. 2.33) and
the discontinuities (i.e., schistosity planes), so that the displacements varied strongly both
over the cross-section and along the tunnel [38]. One could clearly observe that large
deformations correlated with high anthracite contents of the schists [38].
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Figure 2.33. Measured displacements uwt as a function of the distance to the face df,
western tube at km 30°465.

According to Figure 2.33, significant long-term deformations occur, which are recognisable
as the deformations continue to increase at a large distance to the tunnel face (i.e., in a
distance of more than 80 m), even if, in such a distance to the face, excavation has no
significant influence on the deformations. Long-term deformations can either be traced
back to consolidation [42] or creep processes [43]. As no water was present in the carbon
section, the long-term deformations can be assigned to creep. Creep is defined as the
progressive deformation of a material under a constant load, whereby creep deformations
particularly occur when tunnelling through squeezing rocks (cf. [9]). As creep essentially
occurs in tunnel sections, where the limiting shear stress is exceeded (cf. [9]), the major
portion of creep deformations occurs behind the tunnel face. Of course, small portion of
creep deformations may also occur in proximity of the tunnel face. In the following,
however, for reasons of simplicity, we will speak about short-term deformations, when the
creep deformations can be neglected for data analysis (as the deformations are mainly
influenced by tunnel excavation), and about long-term deformations, when we consider the
deformations which are additionally influenced by creep.

Due to the discontinuities and the anthracite layers, loosening also occurred in the tunnel
roof (particularly in the unsupported span), however, the main phenomenon observed in
the carbon and autochthon sections was squeezing.

Analysis of the short-term behaviour of the rock

Contrary to the Sedrun Section of the Gotthard Base Tunnel (Section 2.1) and the GGium
of the Ceneri Base Tunnel (Section 2.2), the zero readings of many monitoring stations
were taken only 20 m behind the tunnel face. These displacement measurements could of
course not be considered for the data analysis, as a big fraction of the displacement is
missing: Only monitoring stations with zero readings within 6 m from the tunnel face were
considered for the data analysis.

In order to ensure comparability between the measuring points, a fixed interval of the
monitoring period is considered. More specifically, we consider only the displacement that
develops as the face moves from a distance of 5 m to a distance of 50 m ahead of the
monitoring station. We decided to consider this interval because the zero readings of the
useable measuring points were usually made at maximum 5 m behind the face (see Fig.
2.34), while the tunnel repair works took place at about a distance of minimum 50 m from
the face.

For dimensional reasons, the displacements in a structure increase linearly with its size,
while all other parameters remain constant. In this section of the Létschberg Base tunnel,
the excavated width b of the tunnel varies from 9.10 to 10.36 m. In order to eliminate this
effect, all the displacements are normalised by b/2.
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Figure 2.34. Magnitude ut: of the displacement vector as a function of the distance to the
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tube at km 30°410; (b)eastern tube at km 30'430; (c) eastern tube at km 30°480;
(d) western tube at km 30°465.

Eastern tube

--- ugf(bi2) 121 e
— u/br2)

Western tube

-
N
1

U, /(b/2)
— u/(bi2)

-
=]
L

)
L

=)
L

£
L

normalised convergence [%]

N
L

0 . : . X o> 0 : : : =0y
30360 30400 30440 30480 30520 30400 30440 30480 30520 30560
chainage [km] chainage [km]
measuring points: e 1 e 2 =3 m 4

Figure 2.35. Normalised magnitude of the displacement vector utwt and of its projection in
the cross-sectional plane uc along the tunnel.

Figure 2.35 shows the longitudinal distribution of the magnitude of the displacement vector
utot and of the magnitude of the projection of the displacement vector in the cross-sectional
plane of the tunnel uc (that develops as the face moves from a distance of 5 m to a distance
of 50 m ahead of the monitoring station) for the measuring points of the different monitoring
stations (for the definition, see Section 2.1). The difference between these values is small
(the dashed lines almost coincide with the solid lines), which means that the longitudinal
displacement component is small compared to the radial and the tangential ones.
Subsequently only the magnitude of the displacement vector ut:t will be considered.

As the tunnel does not cross the tectonic units perpendicularly, the measuring points of

every monitoring station lie partially in different lithological units. In order to investigate the
effect of the schistosity orientation, analogously to Section 2.2, a schistosity angle ( is
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introduced, which is defined as the angle between the normal vector of the schistosity
planes and the radial direction of the tunnel (angle between ns and n in Fig. 2.36; the normal
vector of the schistosity planes for a given dip and dip direction can be determined, e.g.,
after [44]).

From the literature (cf. [25], [45]), itis principally known that the largest displacements occur
at locations where the schistosity is almost parallel to the excavation boundary (i.e., 8 = 0%
cf. Fig. 2.36), the smallest displacement where the schistosity is almost perpendicular to
the excavation boundary (i.e., 8 = 90°; cf. Fig. 2.36). Therefore, the smaller the schistosity
angle, the higher the displacement should be (for a given lithological type and support
class).

Figure 2.36. Schistosity angle (8 at different points of the tunnel boundary: angle between
the normal vector of the schistosity planes ns and the radial direction n.

Figure 2.37 shows the normalised displacement as a function of the schistosity angle S for
the various lithological units and for the four support classes. An influence of the schistosity
angle can be observed only for the anthracite schists for the support class ES6A with invert
(Fig. 2.37). For the sand- and siltstones this influence is less pronounced. This is
presumably because the sand- and siltstones are solely partly schistous [36].

Furthermore, it must be noted that the schistosity mainly dips towards SE and does not
vary strongly along the alignment. As the displacements are always measured at the same
location of the cross-section (see Fig. 2.30), the range of the analysed schistosity angles
is limited (i.e., mainly between 60 and 90°). Therefore, the influence of the schistosity is
less visible than, e.g., in the GGium (Section 2.2). Furthermore, local schistosity changes,
which might also affect the deformations, were not recorded and could not be considered
in the evaluation of the data. In addition, it can be seen in Section 5.1 that, besides the
schistosity angle, the dip angle of the schistosity influences the deformations, which was
not taken into account in the data analysis.

The effect of the lithology on the deformations is remarkable (compare, e.g., the lithological
types 1a with 5 in Fig. 2.37):

The schists (lithological type 3) and the partly schistous siltstones (lithological type 2) seem
to have similar mechanical properties, given that the displacements of these two lithologies
are nearly the same. However, the range of the displacements of these two lithologies is
large, which results probably from the spacing and the persistence of the schistosity that
were not recorded during tunnel advance. An additional source of interpretation uncertainty
is that the siltstones could hardly be distinguished from the sandstones and the schists
during tunnel construction (see Section 2.3.2).

The anthracite content of the schists seems to affect the convergences significantly (i.e.,
compare the lithological types 4 and 5). Unfortunately, the anthracite content was not
recorded systematically. A more detailed data analysis is therefore not possible.

According to the Geological Group of the Létschberg Base Tunnel [36], the lithologies in

the different tunnel sections were not distinguishable. Therefore, a reduction of the
convergences in the different tunnel sections can be traced back to some small extent to
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the installation of the heavier support class ES6B (particularly visible for the sandstones in
Fig. 2.37).
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Figure 2.37. Normalised displacement utw/(b/2) as a function of the schistosity angle .

Analysis of the long-term behaviour of the rock

Figure 2.38a illustrates the typical development of the tunnel convergences in function of
time. Each curve of the diagram corresponds to a different measuring point at a specific
monitoring station. It is readily recognisable that large long-term deformation occur: Even
a year after tunnel excavation, the convergences increased by 5 cm/year. Besides creep,
also the tunnel repairs influenced the long-term squeezing deformations considerably as
they led to a sudden increase in deformations (cf. Fig. 2.38a). Due to these tunnel repairs,
new monitoring stations had to be installed, so that some portions of the displacements
could not be measured; the effectively occurred deformations are thus larger than the
measured deformations.

Figure 2.38b shows the development of the velocity of the displacement over time. One
can readily recognise that, due to the tunnel repairs, the displacements accelerate
temporarily, but then decelerate either as a result of the strengthening of the shotcrete shell
or due to the occurred deformations caused by the tunnel repair itself. However, even after
13 years, the velocity of the displacements still amounts to 1 mm/year. We assume that
this value can be traced back, on the one hand, due to the creep of the shotcrete shell and,
on the other hand, due to measurement inaccuracies, which are in an order of magnitude
of several millimetres.

In order to analyse the long-term deformations, we have to distinguish between the short-
and the long-term deformations. The short-term deformations are mainly influenced by the
tunnel excavation, which is not true for the long-term deformations. For the data analysis,
we assume that the short-term deformations take place after tunnel excavation until a
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distance of 50 m behind the face, as after this distance, the deformations increase
constantly over time even though the advance stops (meaning that the excavation has no
influence on the deformations). In order to ensure comparability between the monitoring
stations (cf. Section 2.3.5), the short-term displacement usmor is defined as the
displacement that develops as the face moves from a distance of 5 m to a distance of 50 m
ahead of the monitoring station.
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Figure 2.38. (a) Magnitude utt of the displacement vector and, (b), deformation velocity v
as a function of time (for the position of the measuring points in the profile: see Fig. 2.30).

After a distance of 50 m behind the face, the deformations increase due to creep: The major
portion of deformations takes place within 150 days after reaching a distance to the face of
50 m. Therefore, in the following, the long-term displacement uwng is defined as the
difference between the displacement that develops within these 150 days (after reaching a
distance to the face of 50 m) and the displacement that develops after reaching a face
distance of 5 m to the monitoring station (for the definition: see Fig. 2.38a).
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Figure 2.39. Normalised displacement as a function of the schistosity angle (3 for the short-

term behaviour (l.h.s. diagrams) and for the long-term behaviour (r.h.s. diagrams) for the
different tunnel support classes.
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The lL.h.s. diagrams of Figure 2.39 show the short-term deformations, while the r.h.s.
diagrams show the long-term deformations as a function of the schistosity angle g for the
four different support classes (Fig. 2.39, cf. Section 2.3.5). In order to ensure comparability
between the measurements, the Figure 2.39 contains only the measuring points of the
monitoring stations, which were not affected by support class changes due to tunnel repairs
(i.e., change of the support class ES6A to ES6B; cf. Section 2.3.3). Therefore, the l.h.s.
diagrams of Figure 2.39 contain less data than the Figure 2.37.

The largest increase in deformations due to creep (difference between the I.h.s. and the
r.h.s. diagrams) can be observed in the anthracites (4) and in the schists (3), while this
increase is less recognisable in the partially schistous siltstones (2) and the sandstones
(1a, 1b). Therefore, the lithology, which influenced the short-term deformations (see
Section 2.3.5), also influences the creep deformations considerably. In fact, measuring
points with larger short-term deformations also exhibit larger long-term deformations,
leading thus to larger differences in deformations along the tunnel with time.

As could already be observed in Section 2.3.5 for the short-term deformations, the influence
of the schistosity on the long-term deformations is not evident from Figure 2.39. Also, an
influence of the support class is, contrarily to Section 2.3.5, not clearly recognisable in
Figure 2.39.

— — 45°-line
L] measuring points
linear fit

0 0.2 0.4 06 0.8

Ugr: [M]
Figure 2.40. Long-term deformations in function of the short-term deformations.

Some of the monitoring stations were located in the vicinity of the tunnel sections, where
repair works had to be carried out. Due to this, the considered long-term deformations may
be influenced by the adjacent tunnel repair works, so that a certain amount of the long-term
deformations may be caused by a longitudinal arching effect and not by creep.

The Figure 2.39 showed that the squeezing intensities along the tunnel are influenced by
creep. This can also be confirmed with Figure 2.40, which shows the long-term
deformations in function of the short-term deformations. If the measured deformations
would lie on the dashed line (i.e., the 45°-line), the long-term deformations would amount
to the short-term deformations and thus no creep deformations would occur. As the
measuring points are lying above the dashed line, the deformations are considerably
influenced by creep. According to Figure 2.40, the measuring points are lying on a linear
regression line (with the R-squared coefficient of determination amounting to 0.935
indicating an acceptable fit of the regression). This means that larger short-term
deformation may be an indicator for the timely identification of larger long-term deformation
during tunnel construction.

In conclusion, larger differences in deformations along the tunnel occur due to creep.
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Conclusions

As for the case histories of the GGium and the Sedrun section, the squeezing deformations
in the carbon section were mainly affected by the lithology and partly by the schistosity.
However, the correlations found in this chapter are much weaker than for the other two
case histories, which is to some extent due to the quantity and quality of the data.

The long-term deformations, which are due to creep, depend linearly on the short-term
deformations: Larger short-term deformations lead to larger long-term deformations.
Therefore, the differences in deformations along the tunnel increase considerably in time
due to creep.
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Introduction

Rock mass heterogeneity may lead — depending on the heterogeneity scale [46] — to
significant variations in the squeezing intensity during tunnelling. A specific case of
heterogeneous rock mass is that of frequently alternating weak and competent zones (Fig.
3.1). Theoretical considerations ([12], [13]) and field observations (cf. Chapter 2) show that
there is a mutual influence between the weaker and the stronger rock mass components.
The latter reduce the deformations of the adjacent weak rock (via shear stresses that
develop along the zone interfaces), but may — due to the influence of the weak interlayers
— become overstressed. The rock mass response to tunnelling depends thus on thickness,
strength and deformability both of the hard and the weak zones and obviously also on their
orientation relatively to the tunnel axis.

(a) (b) (c)

Jweak layer 3 hard layer

Figure 3.1. Tunnelling through a sequence of, (a), very thick weak and competent rock
zones, (b), alternating weak and competent layers of medium thickness, (c), thinly
alternating weak and competent layers.

Chapter 3 investigates the squeezing behaviour during tunnelling perpendicular to a
sequence of alternating weak and hard rock layers (Fig. 3.1). Depending on the
heterogeneity scale, the following three cases can be distinguished:

— If a weak formation is very thick relatively to the tunnel diameter (Fig. 3.1a), then the
stabilising effect of adjacent competent rock is limited to the zone close to the formation
interface and can be neglected in design.

— If, on the other hand, the alternating weak and competent rock layers are very thin
relatively to the tunnel radius (Fig. 3.1c), then the deformation distribution along the
tunnel axis will be practically uniform. This means that rather than modelling the
individual layers, which would be demanding in terms of spatial discretisation and
computation time, rock mass can be conceived as a homogeneous, but, in view of the
rock structure transversely isotropic material, the mechanical behaviour of which
depends on the behaviour of the individual layers and on the ratio of their thicknesses.
For this special case, a closed-form solution (assuming rotational symmetry and plane
strain conditions) is presented and the adequacy of a homogeneous model is
investigated in Section 3.2.

— In a medium thickness weak zone (Fig. 3.1b), the excavation-induced displacements
vary frequently along the tunnel. The stabilising effect of the hard interlayers can be
taken into account computationally by numerical methods, whereby, due to the non-
uniformity of squeezing intensity along the tunnel, the alternating weak and competent
zones have to be modelled discretely ([12], [13]).

The response of the considered homogenised material to tunnelling is isotropic. This
suggests that the rock mass could be considered as an isotropic and homogeneous elasto-
plastic material, with mechanical parameters that depend on those of the weak and hard
components and on the fractions of the latter. Section 3.3 shows how the parameters of
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the equivalent homogeneous and isotropic material can be determined. This is very
valuable for design practice, as it makes it possible to analyse problems, which do not fulfil
the conditions of rotational symmetry or plane strain, also for the case of tunnelling
perpendicular to thinly alternating weak and hard layers.

Section 3.4 investigates how the heterogeneity scale (represented by the thickness of the
weak layers normalised by the tunnel radius) affects the longitudinal distribution of the
displacements in tunnelling perpendicularly to a sequence of weak and hard layers of finite
thickness. Furthermore, this section introduces a simple equation which allows estimating
the displacements in weak zones (considering the stabilising effect of the hard layers)
analytically, rendering numerical modelling unnecessary at least in the preliminary design
stage.

Closed-form solution for the ground response curve in
tunnelling perpendicularly to thinly alternating weak and
competent rocks

Introduction

For the formulation of appropriate constitutive models accounting for the thickness fractions
and mechanical properties of the rock layers, homogenisation techniques have been
proposed in the literature (e.g., [47]), initially only focussing on the linearly elastic response
of the stratified rock mass (cf., e.g., [3], [48]) and later on also investigating some aspects
of failure of a stratified rock mass (e.g., [49], [50], [51], [52], [53]).

Closed-form solutions exist for estimating the displacements and the stresses of tunnels
excavated in transversely isotropic rocks, considering either elastic or elasto-plastic
behaviour (e.g., [54], [55], [56], [57]), whereby these methods do not account explicitly for
the mechanical parameters of the individual layers. At the current state of research, there
is no closed-form solution that allows determining the response of a homogenised rock
mass consisting of alternating weak and hard layers due to tunnelling. Such a solution
would, however, be of great importance, as numerical modelling of thinly alternating rock
structures is very demanding in terms of spatial discretisation and computation time.

Consequently, Mezger [11] derived analytically the ground response curve (GRC) for
tunnelling perpendicularly to thinly alternating weak and hard layers, considering the rock
mass as homogeneous, transversely isotropic material, assuming perfectly plastic
behaviour for both rock constituents and considering additionally a brittle behaviour of the
hard layers with a sudden post-failure decrease in strength (Park and Kim [58] considered
only a isotropic elastic, brittle-plastic rock mass) and out-of-plane plastic flow of the
individual layers, respectively. This solution is particularly important for practical reasons,
as the numerical modelling of a narrow sequence of hard and weak rocks is very time-
consuming.

The closed-form solution will be presented shortly in Section 3.2.2 (while the entire
derivation can be found in [11]). However, in the Sections 3.2.3 and 3.2.4, the practical
relevance of the developed closed-form solution will be discussed. Particularly, guidelines
are provided, which describe:

— under which conditions it is indispensable to consider both the weak and hard layers
(or, in contrary, one can disregard the hard interlayers); and

— under which conditions it is adequate to consider the stratified rock mass as a
homogeneous material.

Formulation of the GRC

For the formulation of the closed-form solution, a deep, cylindrical tunnel excavated in the
homogenised rock mass (the mechanical behaviour of which depends on the behaviour of
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the hard and the weak layers and on the ratio of their thickness fraction x»/xw, where
Xxn + xw = 1) was considered. The constitutive model for the homogenised rock mass was
formulated by extending the procedure of Salamon [3] for elasto-plastic behaviour of the
individual layers, disregarding relative displacements at the layer interfaces. The
alternating weak and hard layers are considered as linearly elastic — perfectly plastic
materials obeying Mohr-Coulomb failure criterion with a non-associated flow rule. The
closed-form solution enables to determine the rock deformations and stresses caused by
the excavation of the tunnel at a large distance to the tunnel face, where the tunnel is
supported by a uniform and radial pressure 0. (see Fig. 3.2), and thus makes it possible to
derive the GRC for a thinly stratified rock mass. The latter can be found in Mezger [11].
The derivation of this analytical solution was mathematically demanding, as a variety of
cases regarding the failure state of the rock had to be considered (plastic and/or elastic
behaviour of the weak and/or the hard layers considering a plastic flow either only in the
tunnel cross-section plane or also perpendicular to it). As the assessment of the ground
response of Mezger [11] is an arduous task, a Matlab-code [59] is provided as electronic
supplementary material®, which makes it possible to estimate easily the GRC for given
properties and thickness fractions of the weak and the hard layers:

_J_J_J_yl lvhl¢hll//hlvwl¢wll//wj' (3'1)
o, X, E, o4, 0,

Figure 3.2. Problem statement for the determination of the GRC.

Relevance of hard interlayers

This section investigates under which conditions the stabilising effect of the hard layers can
be disregarded. As a measure for the stabilising effect, the ratio ua/uw,2p will be considered,
which can be expressed as follows:

X, Oqn E, 04,
(&’_",ﬂ,_h, d, ,Vh,¢h7Wh’Vw'¢W’WWJ’ (3.2)

w 0

where uw,2p is the displacement that would occur in the absence of the hard layers (i.e., for
xw = 1) and can be computed using known equations (e.g., those of [60]) and ua is the
displacement of the transversely isotropic material according to Equation (3.1).

Figure 3.3 shows this ratio as a function of the thickness fraction of the hard layers for an
unsupported opening, for a bigger and a smaller contrast in the mechanical parameters of
the layers as well as for a high and a low in situ stress.

The latter is considered as a borderline case where all the layers behave elastically and
the reduction factor is given by the following simple equation:

3 The Matlab-code can be downloaded from www.tunnel.ethz.ch.
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Up Mo 1 (3.3)

Uyop  H* X('uh— j+1
h
Hy

where u* is the shear modulus of the composite material (see Eq. A-6 of [11]). One can
recognise from Figure 3.3 that the hard layers have a significant stabilising effect even if
their thickness fraction is as low as a few percent. For example, in the presence of 10%
hard layers, the displacements decrease by a factor of 1.4 - 4 depending on the contrast in
the mechanical parameters and on the in situ stress. In general, the higher the contrast in
the mechanical parameters (see also Eq. 3.3) and the higher the in situ stress (and thus
the squeezing potential), the more pronounced the stabilising effect will be for a given
thickness fraction of the hard layers.

Ug/Uy, op [-] 4
14 ——— high contrast (E/E,, = 10, 04 /04, = 10)
\ ——— low contrast (E,/E,, = 5, 04/04,, = 5)
0.9 ql\« W94,
0.8 N —— 0ploy,, = 10 (high squeezing potential)
i ) - - -~ 0,foy, low (elastic behaviour)

>
>

T
0 0.2 04 0.6 0.8 1 %[

Figure 3.3. Ratio uaz/uw2p as a function of the thickness fraction of the hard layers
(unsupported tunnel, va = vw = 0.3, @n = @w = 20°, wh = pw = 1°).

Remarks concerning the adequacy of the homogenised model

The displacements that occur in the case of a stratified rock mass with finite layer
thicknesses w/a and h/a converge to the closed-form solution for w/a > 0 (numerical
calculations and details can be found in Section 3.4). The purpose of the present section
is to analyse whether the homogenisation is adequate or not for a stratified rock mass with
given normalised layer thickness w/a. This depends mainly on the contrast in the
mechanical parameters of the hard and weak layers:

If the mechanical parameters of the weak and of the hard layers are not very different, then
the rock mass can obviously be considered as homogeneous even for very large values of
the normalised thicknesses w/a. Conversely, in the case of a big contrast in the mechanical
parameters, homogenisation would be adequate only for a very thinly stratified rock mass.
This will be illustrated by means of additional computational results (see Fig. 3.4), which
were obtained assuming a high parameter contrast.

The diagrams of Figure 3.4 show the error of the homogenised model as a function of the
normalised layer thickness w/a (upper diagrams) and h/a (lower diagrams) for a series of
thickness ratios h/w and for two values of the initial stress (at the lower stress of 0.75 MPa
both the hard and the weak layers behave elastically for the assumed strength parameters).
The error is defined as (Ua-Umax)/Umax, Where umax is the displacement at the vertical
symmetry plane of the weak layer (see inset in Fig. 3.12) and ua denotes the displacement
of the homogeneous, transversely isotropic material, which is strictly correct only for w/a >
0 or h/a > 0, respectively. Considering an underestimation of the displacements by
maximally 20% as acceptable from the practical viewpoint, the homogenised model would
be adequate solely if the hard layers would be up to
0.05 — 0.125a thick (see lower diagrams of Fig. 3.4), depending on the thickness ratio h/w
and on the initial stress. The error is bigger in the case of the lower initial stress (r.h.s.
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diagrams), where the behaviour is elastic, but this is irrelevant because the displacements
in the elastic range are anyway small.

g, =10 MPa 0, =0.75 MPa

hiw = 1/2

error [[] error [] A h/iy
-60 -60 -
-50 - e -50 -
-40 - / 40 4 -
1/8

=30 4

-30
-20 -
-10 4 1/32 10 4

0 M/ 0

0 0.5 1 1.5 2 whal] 0

error [-] error [-] A
-60 1 -60

50 4 hiw=1/2 1/4 50 4

-40 - /8 -40 4

-30 1

1132 s
B e o I

-10 1

T T T T T 0 T T T T T
0 0.1 0.2 0.3 0.4 05 hall] 0 0.1 0.2 0.3 0.4 0.5 ha[]

Figure 3.4. Error of the homogenised model as a function of the normalised thickness of the weak
layers w/a (upper diagrams) and of the hard layers h/a (lower diagrams; unsupported tunnel, a =
4 m, En =10 GPa, ch=5 MPa, Ew= 0.5 GPa, cw= 0.5 MPa, vh = vw = 0.3, ¢n = w = 25°,
Wh = ww =5°).

Conclusions

In this chapter, an analytical solution (which was developed under the assumptions of
rotational symmetry and plane strain conditions in [11]) for determining the displacements
and the stresses of tunnels excavated in a sequence of thinly alternating weak and
competent layers, assuming an equivalent homogeneous, transversely isotropic rock
mass, was shortly presented. This solution is particularly important for practical reasons,
as the numerical modelling of thinly alternating hard and weak rocks is very time-
consuming.

Even if the hard rock layers make a small fraction of the composite (a few percent), in most
tunnel problems they cannot be neglected during design. They have a considerable
stabilising effect, which can be easily considered by using the developed analytical
solution.

Determination of equivalent parameters for a rock mass
consisting of thinly alternating weak and competent rocks

Introduction

The closed-form solution developed by Mezger [11] considers the thinly stratified rock mass
as a homogeneous, transversely isotropic material, the parameters of which consist of
those of the hard and weak layers and their thickness fractions. As the response of the
homogenised rock mass to tunnel excavation is isotropic in the plane of the tunnel cross-
section, it was investigated whether (and was found out that) it is possible to model the
stratified rock mass as usually in design practice, i.e., by considering a homogeneous and
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isotropic (rather than transversely isotropic) linearly elastic — perfectly plastic material
obeying Mohr-Coulomb failure criterion with a non-associated flow rule.

This approach makes it possible to analyse problems that do not meet the conditions of
rotational symmetry or plane strain, applying known and commonly used methods (e.g.,
those of [61] and of [62] for yielding supports and TBM tunnelling, respectively, under
squeezing conditions) also for the case of tunnelling perpendicularly to thinly stratified
rocks.

Section 3.3.2 presents a method for the determination of the parameters of the equivalent
isotropic material, which makes use of the closed-form solution for the GRC [11] and
considers the parameters of the transversely isotropic material, i.e., the thickness fractions
and mechanical parameters of the weak and the hard layers. By analysing the results of a
parametric study, which was performed with the method of Section 3.3.2, it is possible to
express mathematically the parameters of the equivalent isotropic material as functions of
the parameters of the transversely isotropic material; this is done in Section 3.3.3 using the
closed-form solution of Mezger [11], disregarding out-of-plane plastic flow. Sections 3.3.4
and 3.3.5 discuss the accuracy and illustrate by means of examples the usefulness of the
proposed method.

Determination of the parameters of the equivalent isotropic medium

The Young’'s modulus Eeq and the Poisson’s ratio veq of the equivalent isotropic material
will be taken such that the latter reproduces exactly the elastic response of the transversely
isotropic material:

_ it (Ao + 2105 / 3)

e ; (3.4)

I (ﬂ’eq + lueq)

Aoq
Veg =5 (3.5)
2 : (ﬂeq + /ueq)
where Aeq and Ueq are taken equal to the Lamé constants of the REV:

/ueq = Xhluh + XWluw ’ (36)
B xW2,1W(/1h+2uh)+xh2,1h(,1w +2ﬂw)+2Xth (ﬂh(ﬂw +yh)+ﬂwuw) (3.7)

. Xw (/1/1 +2:uh)+xh (/lw +2,Uw)

where pn and An as well as uw and Aw denote the Lamé constants of the hard and the weak
layers, respectively*.

The three plasticity parameters (0geq, Peq and eq) of the equivalent isotropic medium will
be determined such that the GRC of the latter, which in general can be expressed as:

0,4 O, Odeq
u, = -, 5 1 Vegr Pogs ¥ ’ 3.8
a Eeq I(UO O_O eq eq eqj ( )

4 The Lamé constants are interconnected with the Young’s modulus E and the Poisson’s ratio v by the

following equations:

A E.v u-_E gLl (Ar2u/d) 4
(+v)-(1-2v) 2-(1+v) (A+ 1) 2.(A+u)
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(cf. [60]) coincides at three selected values of the support pressure with the GRC of the
transversely isotropic material:

o,-a o, x, E, o o
_ -0 a h h d,h dw
Uy =T | = B T VOV Ve PV | (3.9)
w GO Xw w Gd,w UO
ie.,
E o, x, E. o,, © o, O
eq ak h h d,h dw _ ak d.eq
E T _’_’E_,_’ ivhi(ph’l//h’vwi(pw"//w _f; s fveq’(peq’l//eq
w Oy Xy Ey Oyw Oy Oy Oy

(fork=1,2,3), (3.10)

or, considering (on account of Egs. 3.4 to 3.7) that:

E, x, E
2ot o
T E ,
f{ deq ’goeqil//eqiﬁli’_h’ﬁl O-dy 7Vh1§0h7l//hva,¢w,wwj = O (fOF k = 1, 2, 3) (312)
O Oy Xw Ew O.d,w Oy

Equation (3.12) represents a system of three nonlinear equations, the solution of which
provides the normalised strength gd.eq/00, the friction angle geq and the dilatancy angle weq
of the equivalent isotropic material for given thickness fraction x» and material constants of
the hard and weak layers:

O-d,e X E o} s o} W
Goq 7 Yeq’ !//eq = f(i’E_h’jy:, Gdo ’Vhfwh'l//hlvwlgowfl//wj " (313)
In this way the parameters of an isotropic material can be determined, the response curve
of which is close to the one of the rigorously defined transversely isotropic material.
Specifically, the GRC of the equivalent material has the same elastic part as the GRC of
the transversely isotropic material and intersects the latter at the three selected values of
the support pressure. The latter can be taken equal to 0, 0.100 and 0.200 in order to capture

the practically important portion of the GRC.

Relationships between the material constants of the equivalent
isotropic medium and those of the transversely isotropic medium

The material constants of the equivalent isotropic medium will be expressed as functions
of the material constants of the transversely isotropic medium. This is possible by post-
processing the results of a parametric study, which was carried out by applying the method
of Section 3.3.2 to a large number of parameter sets (xw/xw, En/Ew, Odn/Od,w, Odw/C0, Vh, Qh,
Wh, Vw, Qw, Ww). The parametric study was carried out with the closed-form solution of
Mezger [11] disregarding an out-of-plane plastic flow. The considered parameter sets cover
a range that is sufficiently wide for practical purposes. For the sake of economy, the
Poisson's ratios were kept fixed to 0.3 and the dilatancy angles were taken equal to
max(¢ — 20° 1°). In addition, use will be made of the fact that weaker materials are
generally also softer, exhibiting a Young's modulus in the order of
500 - 1000 times the uniaxial strength, ie., En=an0dqn and Ew=aw 04w (Where
500 < anw < 1000), which means that the moduli ratio amounts to Ex/Ew = a 0q,n/0d,w, Where
0.5 < a = 2. In this way, the number of parameters to be considered decreases from ten
(Eq. 3.13) to six:

Oy

Gdeq
- 1 Peqg? e :f
. Peqs Veq [

0

vw,ﬁ, alﬂ’ ¢h’ @W] (314)

GO XW Gd,w
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The computational results (obtained with the parameters of Table 3.1) were post-processed
by representing graphically the parameters 0d,e¢/00, Peq and eq of the isotropic medium as
functions of the normalised strength oaw/00 of the weak layers for each set of the last five
parameters of Equation (3.14). Figure 3.5 shows an example of these diagrams for a
specific parameter set; the computational results are represented by the black circular
markers. By analysing these graphs, mathematical relationships were found between the
parameters of the isotropic material and those of the transversely isotropic model (red
curves in Fig. 3.5).

As can be seen in the example of Figure 3.5, the relationships between the parameters of
the isotropic model and the normalised strength oaw/00 consist of three parts, delimited by
the characteristic values (04,w/00)crit and (Og,w/00)cor-

Table 3.1. Overview of the considered parameter ranges for determining the equivalent
parameters.

Xn/Xw 1/8,1/4,1/2,1, 2
Oa/Odw 2,6,10

a 0.5,1,1.5,2
Pn 20°, 25°, 30°
Ow @n—(0°, 5° 10°)

O4 eq"au [

Icase2 |case1 Case 2 | Case 1

o
!
Case 3

\ arLlan(mz)

‘arctan(m‘)l

160,/00)er (/0

194 /o) (O /To)ery
0 T T T

i [CINCAMCHNES i i 3 il ST 2
0 05 1 s oz GOl UUREETRY ys 5 %l g g5 4 g5 2 Tawl%l
—8— computational results —— correlation of Section 3.3.3

Figure 3.5. Parameters of the simplified isotropic model as functions of the normalised
strength of the weak layers (xw/Xxw=1/4, a = 1, Oan/Oaw = 10, @n = ow = 20°).

The first characteristic value is the strength, for which neither the weak nor the hard layers
reach failure (even if 0a/00=0), and can be determined analytically based upon the
equations that were derived for the transversely isotropic medium (cf. [11]):

, . (3.15
Heq Gan Odw ( )

[Jd_WJ _ max Mg (1M, )+ (1M, )ty —phog (14 m,)+(14m, ) 1,
crit :ueq

(o .
o-d,w O.O
If the second r.h.s. term of this equation is greater than the first r.h.s. term, then the hard

layers reach failure earlier than the weak layers. This is usually the case due to the higher
stiffness of the hard layers (cf. [11]).

The second characteristic value, (04w/00)cor, has no physical meaning. By trial-and-error,
the following relationship could be found:

(‘”W] :[—O.OSS-M-ﬂHASJ-E—W. (3.16)

O-O O-d W mw eq
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The relationships between plasticity parameters of the isotropic model and the ground
parameters can be approximated as follows.

If og,w/00 2 (0aw/00)crit (Case 1 of Fig. 3.5), the plasticity parameters are taken such, that the
minimum support pressure g, for which the rock remains elastic is the same for the isotropic
and for the transversely isotropic material:

Mzz_&#, (3.17)
o, o, 1-sing,,
where
mw—1+o-d'w m, —1 Gan  Odw
e _ max| 1- e % 4_He Iaw %0 | (3.18)
o, M, 1+m, My, 1+m,
¢eq=xh'(0h+xw'¢w’ (319)
'//eq =Xy Wyt X, W, - (320)
If (0dw/00)cor < Taw/00 < (Oaw/O0)crit (Case 2 of Fig. 3.5), then
Zaca _ (m, _mz)[GdYWj +m,.Zax (3.21)
%o %o cor 9
Pog =1°, (3.22)
and
‘//eq =Xy Wt X, Wy (323)
where
__0.94 h(% —1}[0.96 cos(p, ) +0.088 m, 4 5}, (3.24)
cos(¢p,) Ogw Oun Ew
2 _ m1 .(Gd,w ]
O,
m, = max 9 Jeor -0 (3.25)
[Ud,w J _(O-d’w J
% crit 9 cor
If 04 w/00 < (0dw/00)cor (Case 3 of Fig. 3.5) then
Goea _py T (3.26)

Oy Oy
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_35.0 {"dw ] {[M] _ MJ
- s
%0 Jeor \\ 90 Jeor 0

1-e
my,  _(12.x,+3)E,/E,,
Py = - -(1—0.6-—-6 J-(xh~co,,+xw-(pw),(3-27)
73.5-53-[%’”] m,
1-e 90 J cor
Weqg = Xpn Wnt+ X, W, (3.28)
where
o, = (x,, Zan xWJ . (3.29)
o-d,w

Accuracy of the proposed simplified model

Note, that in certain cases, particularly if E/Ew and 04w/0q,n are high and gaw/0o small, the
middle section of the GRC cannot be captured perfectly (error up to 20%) by using the
isotropic model, no matter how well its parameters are chosen (compare green line with
black markers in the I.h.s. diagram of Fig. 3.6).

However, the proposed equations for 0d,eq/00, Peq and weq reproduce well the computational
results (compare red lines with black markers in Fig. 3.5). Generally, for ¢n = ¢w, the error
is less than 10%.

The equations of Section 3.3.3 provide in general satisfactory results also for ¢w < @n, but
may result (particularly the equations for @eq and weq; Egs. 3.21 to 3.29) in an
overestimation of the displacements (by maximum 50%) in the range of 02/00 = 0.1 — 0.2,
especially if Ew/Ew and 0un/04w are high and o4w/0o small (compare red line with black
markers in the r.h.s. diagram of Fig. 3.6).

u /al-] u/a -]
0.015 & XnfXy = 14 0.03 XpfXy, = 112
a=2 ‘ a=2
Ogh/Ogw = 10 X Ogp/Ogw = 10
0.01 4 Ogw/00 = 015 0.02 04,00 = 0.075
(Ph=(pw=20 pt (Ph:30°
Q 9, = 20°
0.005 - 0.01
0 (O T T
0 2 4 6 8 10 0, [MPa] 0 2 4 6 8 10 0,[MPa]

—@— isotropic material, parameters after Section 3.3.2
—— isotropic material, parameters using equations of Section 3.3.3
—— transversely isotropic material

Figure 3.6. Ground response curves for oo = 10 MPa and Ew = 1 MPa (all other rock
parameters: see labels inside the diagrams).

Given @eq and weq according to Equations (3.22), (3.23), (3.27) and (3.28), the value of
0Od.e¢/00 that results from Equations (3.21) and (3.26) deviates by maximum 20% from the
value that would reproduce the correct displacement at g2/00 = 0 (compare red line with
black markers in Fig. 3.7). Curve fitting by the proposed equations is significantly better at
higher ¢n values (compare detail in Fig. 3.7a with detail in Fig. 3.7b). The maximum error
occurs again for high Ex/Ew and 04w/04n values in combination with low gqw/00 values. This
is particularly problematic, as especially under a high initial stress 0o, a small error in 0q,eq
can produce a considerable error in the displacements. However, considering the usual
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uncertainties with respect to the rock parameters, a threshold error of 20% (Fig. 3.7b) can
be considered as acceptable.

¢, =30°% ¢, =20° ¢, = 20°, @, =10°

(a) f\ Detail: (b) ' Detail:

0.8
4106
\oo 3 0.4
g
S
o 24
14
0 T T T T 7 0 T T ) ¥ >
0 05 1 15 2 JuwlOll 0 05 1 15 2 Taw/%l]
—e— computational results for o,/0, = 0 (given the Egs. 3.22, 3.23, 3.27 and 3.28) —— correlation of Section 3.3.3

Figure 3.7. Equivalent parameters Oq,eq/00 (Xv/Xw= 1/4, a = 1, Oan/Taw = 10).

Application examples

The usefulness and accuracy of the proposed simplified equivalent isotropic model will be
illustrated by means of four tunnelling problems (considering an initial hydrostatic stress
field of 10 MPa): (1) The ground response curve of a cylindrical tunnel (shown for evaluating
the accuracy of the equivalent parameters; Fig. 3.8); (2) The longitudinal displacement
profile of an unsupported tunnel (Fig. 3.9); (3) The boundary displacements of an
unsupported tunnel with a horseshoe profile assuming plane strain conditions (Fig. 3.10);
(4) The ground pressure p developing upon the shield and the lining in shielded TBM
tunnelling (Fig. 3.11).

The exact solutions were obtained either analytically (for problem 1) or numerically (for the
problems 2 to 4) using the Abaqus finite element code, where the transversely isotropic
material model was implemented (see Section 4.2). All the numerical details for problem 2
can be found in Section 5.1; Fig. 3.9). Problem 4 was solved by modelling tunnel excavation
and support installation step-by-step; further numerical details can be found in [63], Fig.
3.11). Table 3.2 shows the assumed parameters of the weak and of the hard layers as well
as the parameters of the equivalent isotropic material (calculated after Section 3.3.3).

transversely isotropic material
(disregarding out-of-plane plastic flow)
transversely isotropic material
(considering out-of-plane plastic flow)

equivalent isotropic material with parameters after Section 3.3.3
(disregarding out-of-plane plastic flow)

170 0, [MPa]
Figure 3.8. GRC of a cylindrical tunnel.

The comparative computations show that the simplified isotropic model with the parameters
after Section 3.3.3 is sufficiently accurate even for problems that do not meet rotational
symmetry and plane strain conditions. The error amounts to less than 10% and is due to
the out-of-plane plastic flow, which was not considered in the determination of the
parameters of the equivalent isotropic material. (The out-of-plane is negligible in this case,
as @n = @w; see [11]).
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Figure 3.9. Longitudinal displacement profile of an unsupported tunnel.
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Figure 3.10. Magnitude of the displacement vector along the unsupported tunnel boundary
of a horseshoe profile.

3
N
E \

L=10m o . ‘ :
=3 151 P - \ transversely isotropic material
& ;”U —e— equivalent isotropic material

1 lining shield 3
_______ 3
0.5 K, = 630 MPa/m
K, = 800 MPa/m
0 ‘ . .
10 8 6 4 2 0 zal]

Figure 3.11. Ground pressure p acting upon the shield and the lining in TBM-tunnelling.

Table 3.2. Rock parameters and equivalent parameters.

Xp/Xw Ej Vh Pn Ch WYh E, Vw Pw Cw Yw
[-] [GPa] [] [’] [MPa] 1 [GPa] [-] [’1 [MPa] 1
1/8 6 0.3 20 2.6258 1 1 0.3 20 0.4376 1
Eeq Veq Peq Ceq Yeq

[GPa] [-] [’ [MPa] [’1

1.536 0.28 18.6 0.719 1

Closing remarks

Section 3.3.2 explained how the analytical solutions of Mezger [11] for the ground response
curve can be used in order to determine the parameters of an equivalent homogeneous,
isotropic and elasto-plastic material for given parameters of the weak and the hard layers
of a thinly stratified rock mass. This is very useful for design purposes since it allows the
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use of common calculation methods and programs to solve problems that do not meet the
conditions of rotational symmetry or plane strain.

Using the method of Section 3.3.2, relationships between the parameters of the equivalent
isotropic model and those of the rigorous transversely isotropic model were developed in
Section 3.3.3. These equations were found by applying the closed-form solution of Mezger
[11] disregarding an out-of-plane plastic flow. Therefore, they may lead to an
underestimation of the rock displacements and pressures. In most cases the effect of out-
of-plane plastic flow is negligible. However, if ¢n is considerably higher than ¢w and the
strength o4w/00 of the weak layers very low, neglecting the out-of-plane plastic flow may
lead to inaccurate results (see [11]). The effect of the out-of-plane plastic flow can be
assessed for given parameters of the hard and of the weak layers using the closed-form
solutions of Mezger [11]. If this effect is significant, then the parameters of the simplified
equivalent isotropic material can be determined with the procedure shown in Section 3.3.2.

Influence of the heterogeneity scale on the squeezing
variability along the tunnel

Introduction

Rock mass heterogeneity may lead — depending on the heterogeneity scale [46] — to
significant variations in the squeezing intensity during tunnelling (see Section 3.1). Section
3.4.2 investigates how the heterogeneity scale (represented here by the normalised
thickness w/a of the weak layers) affects the longitudinal distribution of the displacements
in tunnelling perpendicularly to a sequence of weak and hard layers of finite thickness. With
the exception of extremely wide weak zones (for which known closed-form solutions can
be used) or thinly stratified rocks consisting of weak and hard interlayers (for which the
analytical solution of [11] applies), the displacements can be determined only by means of
numerical computations. However, as shown in Section 3.4.3, one can obtain a reasonably
accurate estimation of the displacements in weak zones also analytically, by means of a
simple equation.

Longitudinal distribution of the displacements

Figure 3.12 shows the maximum umax and the minimum displacements umin (0ccurring in
the middle of the weak and of the hard layer, respectively) as a function of the layer
thicknesses w/a for various thickness ratios h/w, which were obtained by axisymmetric
numerical calculations which were carried out with the FE-program Abaqus [64].
Specifically, an unsupported, cylindrical tunnel that crosses alternating hard and weak
layers of a finite thickness of h and w, respectively, will be studied (cf. [13]). The rock layers
were modelled discretely as isotropic, linearly elastic and perfectly plastic material with the
Mohr-Coulomb vyield criterion (considering the subroutine of [65]). Figure 3.13 shows the
longitudinal displacement distribution for a fixed thickness ratio h/w = 0.5 and various w/a-
values.

The computational results allow drawing the following conclusions:

— There is clearly an interaction between the hard and the weak layers, since the
displacement in the cross-section in the middle of a weak layer (umax) or of a hard layer
(umin) may be bigger or smaller depending on the distance between these cross-sections
and the layer interface (i.e. depending on w/a and h/a, respectively). The hard layers
have a stabilising effect on the weak layers and, vice versa, the latter have a
destabilising effect on the hard layers.

— The interaction between the layers is maximum for w/a - 0 (and arbitrary h/w), i.e.,
when the layers are very thin in relation to the tunnel radius. In this case, the
displacements are practically uniformly distributed and can be obtained by means of the
closed-form solution of Mezger [11].

— With increasing layer thicknesses (i.e., for increasing w/a- and arbitrary h/w-values), the
interaction between the layers (the stabilising effect of the hard layers and the
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destabilising effect of the weak layers) becomes less and less pronounced. The
displacement umax in the middle of the weak layer increases, while the displacement tUmin
in the middle of the hard layer decreases (see also Fig. 3.13). The squeezing intensity
varies along the tunnel within a scale of a few metres (cf. [13]).

— For w/a &> = (which practically means for w/a > 16 in the example of Fig. 3.12), the
displacements in the middle of the weak and of the hard layer approach the
displacements uw,2p and un,2p, respectively, obtained assuming plane strain conditions
with the parameters of the weak and of the hard layers, respectively; the interaction
between the layers is limited to the vicinity of their interface (Fig. 3.13).

ufuy, op [

hw=1/32 ---- hw=14 A u, & Uy, ® Uy % %
1 hW=1/16  ++eeeeee hiw=1/2 A |
— — hiw=1/8 Anagnostou & Kovari (2003) | hi2 w/2
0.9 |
0.8 '
weak rock ! ——a

0.7
0.6 hard rock ——a

0.5 ;

Figure 3.12. Normalised displacement in the middle of the weak layer (Umax) and of the
hard layer (umin, unsupported tunnel, a = 4 m, oo = 10 MPa, En = 10 GPa, ch= 5 MPa, Ew =
1 GPa, cw= 0.5 MPa, va = vw = 0.3, ¢n = w = 25°, wn = ww = 5°).

u/uy, o [-]

— wa=16

Figure 3.13. Longitudinal displacement distribution for h/w = % (unsupported tunnel, a = 4
m, go = 10 MPa, En = 10 GPa, ch=5MPa, Ev=1 GPa, cw= 0.5 MPa, vh =vw = 0.3, on = Qw =
25°% wh = yww=15°.

Similar remarks apply to the case of hard layers that exhibit brittle behaviour, the only
difference being that the stabilising effect of the hard layers is smaller if they become
overstressed and experience brittle failure. Figure 3.14 compares the results obtained by
numerical computations under the assumption of brittle behaviour of the hard layers (red
lines) with those obtained assuming perfectly plastic behaviour (black lines). For the former,
the numerical calculations were performed with the program FLAC [66]: The hard layers
were modelled with the so-called “softening model”, which considers the cohesion as a
function of the deviatoric plastic strain. The effect of brittle behaviour is evident. It results
in larger displacements (both in the hard and in the weak layers) particularly for small ratios
w/a and h/w, where the hard layers are heavily loaded (cf. [13]).
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ulu,, op [
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b —
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weak rock :

0.8

0.7
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hard rock ——m

0.6 |

0.5
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0.3
0.2

0.1

0 2 4 6 8 10 12 14 16 whal]

hiw=1/16 ——  brittle (¢, = 5 MPa, ¢, 5 = 3 MPa) A u, (homogeneous, transversely isotropic material, w/a — 0)
.............. hiw=1/8 ——  perfectly plastic (¢, = 5 MPa) + U,
LT
_— —  hiw=1/2

Figure 3.14. Normalised displacements in the weak (umax) and in the hard (umin) layers as
a function of the normalised thickness w/a for perfectly plastic or brittle behaviour of the
hard layers (unsupported tunnel, a =4 m, o = 10 MPa, En = 10 GPa, Ev= 1 GPa, cw= 0.5
MPa, vh = vw = 0.3, @n = w = 25°, wn = pw = 5°).

A simple equation for the displacements in a weak zone considering a
wall-effect

Anagnostou and Kovari [67] proposed the following equation for estimating the
displacements umax in a weak zone of limited length w bounded by competent rock:

umax = 5 uw,2D ’ (330)

where uw,2p denotes the displacement that would occur in an infinitely long weak zone while
0 represents a reduction factor (0 < & < 1) that accounts for the stabilising effect of the
adjacent competent rock:

5=1-e % Pu (3.31)

where pw,2p denotes the radius of the plastic zone in the case of an infinitely long weak
zone. As both uw,2p and pw,2p can be computed applying the commonly used closed-form
GRC solution, the equations above allow a quick estimation of the wall-effect without
performing numerical analyses.

The equation for the reduction factor & was found by analysing the results of a parametric
study, which was carried out assuming that the competent rock is rigid. Due to this
assumption, the equation of Anagnostou and Kovari [67], in general, overestimates the
wall-effect and underestimates the displacements in the weak zone, particularly if the latter
is bounded by relatively thin layers of competent rock. In the numerical example of Figure
3.12, the equation of Anagnostou and Kovari [67] (red solid line) underestimates the
displacements considerably if h/w < 0.5.

In the present research project, it was investigated whether the equation of Anagnostou
and Kovari [67] can be modified, so that it includes the effects of deformation and failure of
the competent rock. Intuitively, by studying numerical results as those of Figure 3.12 and
by considering some important conditions (given below), the following simple equation was
constructed:

Uinax :5_(1_ u, J+ U, , (332)

uw,ZD
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where ua is the displacement that would occur in the case of a thinly stratified rock mass
(i.e., for w/a > 0 and arbitrary h/w) and can be computed analytically after Mezger [11].
The modified equation fulfils the following three conditions:

— Umax > Uafor w/a - 0 (note that 6 > 0 in this case; Eq. 3.31);
—  Umax > Uw,2p for w/a - « (note that & > 1 in this case; Eq. 3.31);

—  Umax = O'Uuw,2p (i.e., equation of [67]) if the competent rock is rigid (note that ua = 0 in this
case).

Figure 3.15 plots the displacements after Equation (3.32) and the exact ones obtained from
the numerical calculations as a function of w/a. For this specific parameter set, the equation
is reasonably accurate.

U a/Uy, op [F]

maxUw,21
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— —_ - _"__‘_.__—,_-.:--'-- | |
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* numerical results for h/w=1/16 . — hiw=1/16 with simplified equation Anagnostou & Kovari (2003)
| numerical results for h/w=1/8 — — — h/w=1/8 with simplified equation
A numerical results for hiw=1/4 = =====-- h/w=1/4 with simplified equation
[ ] numerical results for h/w=1/2  «eeeemeeeenens h/w=1/2 with simplified equation

Figure 3.15. Accuracy of the simplified Equation (3.32) for perfectly plastic behaviour of
the hard layers: Normalised displacement umax as a function of the normalised weak layer
thickness (unsupported tunnel, a =4 m, oo = 10 MPa, En = 10 GPa, chn=5 MPa, Ex= 1 GPa,
cw=0.5 MPa, vh =vw = 0.3, @n = @ow = 25°, wn = ww = 5°).

The accuracy of the proposed equation was further checked by means of a comprehensive
parametric study considering the significant parameters of the problem (disregarding brittle
behaviour of the hard layers):

E,
— =V O W Ve P W | 3.33
w'a'o, o, o, E h1Pns¥n (0‘//J ( )

w

with the values after Table 3.3. Figure 3.16 plots the displacements after Equation (3.32)
as a function of the exact ones and shows that the equation is reasonably accurate.

Equation (3.32) was not checked comprehensively for the case of brittle behaviour of the

hard layers, but holds probably also for this case, as indicated by the computational
example of Figure 3.17.
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Figure 3.16. Accuracy of the simplified Equation (3.32): Normalised (approximated)
displacement after Equation (3.32) versus exact normalised displacement.
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Figure 3.17. Accuracy of the simplified Equation (3.32) for brittle behaviour of the hard
layers: Normalised displacement umax as a function of the normalised weak layer thickness
(unsupported tunnel, a = 4 m, go = 10 MPa, En» = 10 GPa, chv= 5 MPa, chr=3 MPa, Ew=
1 GPa, cw= 0.5 MPa, vh = vw = 0.3, on = @uw = 25°, Wn = ww = 5°).

Disregarding the wall-effect introduces an error on the safe side (it overestimates the
deformations in the weak zone), which however is small if the weak zone is sufficiently long
in relation to tunnel radius. Expressing the error as (Uw,2p-Umax)/Umax, taking umax after
Equation (3.32) and denoting the acceptable error by &1, the wall-effect can be neglected
if the weak zone thickness is:

W>2.5pW’2D/n[gtL+1£1— Y B (3.34)

tol uw,2D

where the plastic radius pw,2p and the radial displacement uw,2p0 depend on the in situ stress
0o and on the mechanical parameters of the weak zone and can be computed using the
common GRC equations, while the radial displacement us depends on the in situ stress 0o,
on the thickness ratio h/w and on the mechanical parameters of both layers and can be
determined using the closed-form solution of Mezger [11]. Figure 3.18 represents
graphically Equation (3.34).
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WPy, 5p [F] A

€0 = 20%

disregarding wall-effect overestimates
displacements only slightly (error < 20%)

disregarding wall-effect overestimates
displacements considerably (error > 20%)

0 0.2 0.4 0.6 0.8 1 Ualuyop ]
rigid i

competent K
rock increasing ratio h/w, stiffness and strength of competent zone

Figure 3.18. Normalised weak zone length for which disregarding wall-effect overestimates
displacements by 20%.

Table 3.3. Parameter range considered for checking accuracy of Equation (3.32).

h/w [] Ya; 1/8; 1/132

w/a [-] 0.5;1; 2; 8; 16

0/00 [-] 0

Oauw/00 [-] 0.15;0.3; 0.45

Odn/Caw [-] 2

EwEw[] 1,4

Vh = Vi [-] 0.3

on[°] 20; 30

ow[’] ¢n—(5°,10°)
1° for @nw < 20°

Whw [°] ®nw — 20° for @uw > 20°

(according to [68])

Conclusions

At the current state of research, the displacements in tunnelling perpendicularly to a
sequence of weak and hard layers of finite thickness can be determined only by means of
numerical computations. For this, in this chapter, a simple analytical equation was
developed based on the solution of Anagnostou and Kovéri [67], which makes it possible
to estimate the displacements in a weak zone considering the wall-effect of the hard layers
and which is accurate enough for practical purposes. This equation seems also to hold for
the case of brittle behaviour of the hard layers, where the stabilising effect is less
pronounced.
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Introduction

When tunnelling parallel to alternating hard and weak layers, the tunnel profile may
experience non-uniform deformations, but the displacements do not vary along the tunnel
axis. Although there is no squeezing variability in tunnelling parallel to the bedding, this
case is analysed in this research project because it represents a borderline case for the
general case of an arbitrary orientation of the anisotropy plane, which is studied in Chapter
5.

(@) (b) (c)

[ weak layer [ hard layer

Figure 4.1. Tunnelling through a sequence of, (a), very thick weak and competent rock
formations, (b), alternating weak and competent layers of medium thickness, (c), thinly
alternating weak and competent layers.

Depending on the heterogeneity scale, the following three cases can be distinguished (cf.
Fig. 4.1):

— If the weak (or the hard) layers are very thick and their interface lies far away from the
tunnel (Fig. 4.1a), their unfavourable (or stabilising) effect will not be noticeable in the
convergence distribution.

— If the alternating weak and hard rock layers are very thin relatively to the tunnel radius
(Fig. 4.1c), then the rock mass can be conceived as a homogeneous, but, in view of the
rock structure, transversely isotropic material.

— Otherwise (Fig. 4.1b), the heterogeneity of the rock mass has to be considered explicitly
in the numerical modelling.

The present chapter of the research report is structured as follows:

Section 4.2 deals with the special case of a very thinly stratified rock mass (Fig. 4.1¢). The
constitutive model of Section 3.2 is formulated in 3D and implemented in Abaqus. This
model serves to investigate the tunnelling-induced displacements under plane strain
conditions and to develop design diagrams that allow to estimate quickly the ground
response for a wide range of conditions in terms of the mechanical parameters and the
thickness fractions of the weak and hard layers.

Section 4.3 analyses the effect of the rock structure on squeezing deformations paying
attention to the various heterogeneity scales of Figure 4.1. Specifically, numerical (plane
strain) calculations are performed, where the individual layers are modelled discretely. The
ratio of the thickness of the layers to the tunnel radius is considered as a measure of the
heterogeneity scale. The numerical results indicate, (i), under which conditions it is
adequate to consider the homogenised model rather than the individual layers (Section
4.3.2), (i), in which cases the heterogeneity of the ground can be neglected in the design
(Section 4.3.3), (iii), or must be considered explicitly in numerical modelling (Section 4.3.4).

November 2019 83



4.2

4.2.1

42.2

84

1664 | On the variability of squeezing behaviour in tunnelling

Section 4.4 deals with schistous rocks, as they represent, from the mechanical point of
view, a special case (and their behaviour exhibits similarities to that) of a stratified rock
mass. The excavation-induced displacements are investigated using a constitutive model,
which was formulated (using the homogenisation technique) and implemented in Abaqus.
For this purpose, design diagrams were also worked out that allow assessing quickly the
effect of schistosity on the squeezing deformations.

Response of a thinly stratified rock mass, striking parallel to
tunnel axis

Introduction

The squeezing behaviour in tunnelling parallel to a sequence of thinly alternating weak and
hard rocks has not been analysed so far. This will be done in the present section based
upon a homogeneous, transversely isotropic material model. An overview about stratified
rock mass and homogenisation techniques can be found in Section 3.2. Contrarily to
Section 3.2, however, a closed-form solution cannot be formulated for the GRC, because
the problem is not rotationally symmetric. Therefore, the problem will be solved numerically.
To this end, a constitutive model was formulated and implemented into the FE-program
Abaqus ([64]; Section 4.2.2). Section 4.2.3 discusses the tunnelling-induced displacements
and stresses by means of computational examples considering a circular tunnel cross-
section under plane strain conditions, which corresponds to the situation that prevails in
deep tunnels far behind the face. Subsequently, based upon a comprehensive parametric
study, dimensionless diagrams are worked out in Section 4.2.4 that allow depicting the
tunnelling-induced displacements for practically arbitrary conditions. These dimensionless
diagrams can be used to determine the mechanical parameters of an isotropic
homogeneous elasto-plastic material that can be characterised as "equivalent" to the
transversely isotropic material in the sense that it experiences the same maximum or
minimum displacements (Section 4.2.5). By using this equivalent isotropic material in
combination with existing computational methods or design nomograms (e.g., those of [62])
one can estimate the range of rock pressures or deformations developing when tunnelling
parallel to thinly stratified rocks.

Constitutive model
4.2.21 Formulation

For the formulation of appropriate constitutive equations (accounting for the thickness
fractions and mechanical properties of the individual rock layers), homogenisation
techniques for a sequence of alternating weak and hard layers have been proposed in the
literature, initially considering linearly elastic behaviour (cf., e.g., [3], [48]) and later on
extended for elasto-plastic behaviour of the layers ([4]; [69]; [70]) and shear failure along
their interfaces [71].

The representative elementary volume (REV), which consists of hard and weak layers lying
perpendicular to the y-axis, considered for the formulation of the constitutive model is
presented in Figure 4.2. The constitutive model of the REV is equivalent to the one used in
Section 3.2, but is formulated for the general 3D case (and not solely for plane strain
conditions). An arbitrary bedding orientation can be considered by appropriate coordinate
transformations: the stresses and the strains are transformed from the global into the local
coordinate system (in which the y-axis is perpendicular to the layers) and, after having
performed all the computations in the local coordinate system, the resulting stresses are
back-calculated into the global coordinate system. The only input needed for the coordinate
transformation is the normal vector of the layers.

The model — whose elasto-plastic parameters depend on thickness fraction, strength and
stiffness properties of the alternating layers — was formulated and implemented in the finite
element code Abaqus [64] based upon the general homogenisation procedure of Lourengo
[4], the only difference being that Lourengo [4] used the von Mises rather than the Mohr-
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Coulomb vyield criterion. Therefore, as usual in design practice, the individual layers are
modelled as linearly elastic — perfectly plastic materials obeying Mohr-Coulomb failure
criterion with a non-associated flow rule (no tension cut-off, no brittle behaviour), using the
stress return algorithm after Clausen [65], which, of course, considers an out-of-plane
plastic flow.

/z

[ weak layer y
[ hard layer

X

Figure 4.2. REV consisting of a sequence of hard and weak layers.

More details concerning the formulation and validation of the constitutive model can be
found in Mezger [11].

4.2.2.2 Rock element behaviour

In order to illustrate some basic aspects of the material behaviour, simple displacement-
controlled element tests (considering a single quadratic element, 1 m x 1 m big, under plane
strain conditions) were performed computationally. An uniform displacement u is applied
either perpendicularly or parallel to the layers (see insets of Fig. 4.3). For simplicity, the
thickness fractions of the hard and weak layers were taken equal to 50%.

The l.h.s. diagrams of Figure 4.3 show the results for the case of a displacement applied
in the y-direction, i.e. perpendicularly to the layers. The stresses in y-direction are the same
in the hard and in the weak layers and thus also in the REV (i.e., Oy,n = Oyyw = Oy). The
weak layers experience, due to their lower stiffness, a bigger compressive strain in
y-direction than the hard layers and, in the absence of the hard layers, would expand also
more laterally (in x-direction). As they are retained by the hard layers in x-direction,
compressive stresses develop in the weak layers (i.e., Oxw = Omaxw > 0) and tensile
stresses in the hard layers (i.e., Oxxh = Omaxh <0, @S Oxx= Xn Oxxh + Xw Oxxw). The
development of tensile stress in the harder layers was already described by Bourne [72]. It
results in a tensile failure (at ¢, = 0.0037 in the present example) and so in a slight
decrease in the stiffness. Subsequently, also the weak layers fail (at €, = 0.004) and the
stress remains subsequently constant.

The r.h.s. diagrams of Figure 4.3 show the results for a displacement applied in the
x-direction, i.e. parallel to the layers. The hard and the weak layers experience the same
stresses in y-direction but different stresses in the x-direction. Expectedly, the stress in the
REV corresponds to the volumetric averages of the stresses in the different layers (i.e.,
Oxx = Xn Oxxh + Xw Oxxw). The hard layers are by a factor 10 stiffer than the weak layers and
experience, therefore, in the elastic state, a 10 times higher stress in the
x-direction. As the uniaxial compressive strength of the hard layers was taken 10 times
higher than the one of the weak layers, the weak and the hard layers fail at the same time.
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Figure 4.3. Results of the single element tests for displacement application perpendicularly

(1.h.s.) or parallel (r.h.s) to the layers (xn = xw = 0.5, En = 10 GPa, chn=5 MPa, Ev= 1 GPa,
cw=0.5MPa, vi =vw = 0.3, on = uw = 25°, Wn = ww = 5°).
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Furthermore, the composite behaves expectedly considerably softer when it is loaded
perpendicularly to the layers (compare r.h.s with I.h.s curves) and the stiffnesses agree to
the analytical predictions. Specifically, Hooke’s law for the composite reads as follows [3]:

1 noy
E1 E1 E1
Exx Y i vy 0 Ox Sy S S 0 O xx
w|_ E, E, E, | %w _ S, Sy S, O 1oy
€2 _ﬁ _ﬁ i 0 o, S, S 333 0 O,
Vxy E, E, E, Ty 0 0 0 s, Ty
0 0 0 i
G,
where
Evy (-1+v,2) (<14 X,) - E, (14,7 v, X,
nE W (F1402) (<14 x,) - E, (1+v,7)x,
(-E, (1+v, )(=1+ X, )+ E, (1+v,) X, )(—v X, +v,, (<14, + X))
V = )
2 —Eh(—1+vw2)(—1+xw)+EW(—1+vh2)xw
EZ(-1+v.2)(-1+x, ) =2E.E. (~1+v,v, ) (-1+x.)x, +E.2(-1+v,2)x, 2
E _ h w w h=w h”w w w w h w
1T 3

E,(-1+v.2)(-1+x,)-E, (-1+v,” ) x

w

E EhEW(Eh(—1+vw)(—1+xw)—Ew(—1+vh)xw)
2 = ’
Z

Z=E}(-1+v, +2v,)(-14x,) %, +E7 (<14 v, + 20,7 )(-1+ X, ) X, —

E,E, (—1 +2x, +(=2+v,)x,2 +v, (<14 X, ) (-1+ X, +4v, X, )) ,

Eha

% B () (e ) B (1R,

assuming plane strain conditions (i.e., €2z = 0),

S _i Si2 — S5y 0
S11 811
‘gxx S.S 32 XX S11 812 O XX
Sy | = Sip — % Sy — f 0| Oy | = 821 822 0 yy
yxy O " 0 " S44 z-xy O O 833 z-xy

(4.1)

(4.2)

4.3)

(4.4)

(4.5)

(4.6)

4.7)

(4.8)

The two upper diagonal terms represent the stiffness of the composite perpendicular and
parallel to the layers and are equal to 2278 MPa and 6044 MPa, respectively, which agrees

with those obtained from the numerical calculations.
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Furthermore, the uniaxial compressive strength of the stratified is equal to 8633 kPa (i.e.,
Od = Xn Odh + Xw Og,w) @nd is the same, when loaded perpendicular or parallel to the layers
(cf. [49)).

The failure of the stratified rock mass, accounting for the thickness fractions and
mechanical properties of the rock layers, was investigated by various authors (e.g., [49],
[52], [53]). The uniaxial compressive strength of the stratified rock mass depends on the
direction of loading (cf. Fig. 4.4). The lowest uniaxial compressive strength occurs at an
angle 6 =45° - @uw/2 between the layers and the loading direction. Hence, at this
orientation, the composite behaves as though it was provided with the strength properties
(cw, @w) of the weakest layers (cf. [49]). The largest uniaxial compressive strengths occur
at an angle of & = 0° and 90° (cf. Fig. 4.4).

a4 [MPa] A
— — Lydzba et al. (2003)
10 [ ] Numerical calculations
Od=xh0dvh+xwod‘w.K,,,,,,AA,,J ————————————— = -———-"9 y oy
754 \ 4
\ \ !
1
54 | .
\
'} \ ¢
25 i - T
(=T PR { 3 ,_“,_,.—, e e
45°-¢, /2
0 T ‘ L T T
0 30 60 90 B[]

Figure 4.4. Uniaxial compressive strength aq of the stratified rock mass as a function the
angle between loading direction and bedding (xn=xw= 0.5, En =10 GPa, ch=5 MPa,
Ew=1GPa, cw= 0.5 MPa, vh = vw = 0.3, @n = ow = 25°, wnh = pw = 5°).

Basic aspects of the bedded rock response to excavation

The ground response to tunnel excavation parallel to the layers is analysed by plane strain
numerical computations (as in Section 4.3) for a series of layer thicknesses considering,
due to symmetry, only a quarter of the system (Fig. 4.5).

According to Figure 4.6, which presents the displacement as a function of the support
pressure for two points (Fig. 4.6a) as well as the displacement distribution along an
unsupported excavation boundary (Fig. 4.6b), respectively, the results of the discrete
models converge to those of the homogenised model with decreasing layer thickness, thus
validating the formulation and numerical implementation of the homogenisation procedure.

Additional evidence is provided by Figure 4.7, which presents the principal stress
orientation as well as the stress field beside and above the crown, and by Figure 4.8, which
presents the evolution of the plastic zone and of the deformation field during the reduction
of the support pressure according to the homogenised model and to a discrete model of
very thin alternating layers.

The computational results of Figures 4.6 to 4.8, besides validating the implementation of
the homogenised model, provide valuable insight in the response of a thinly stratified rock
to tunnel excavation.

According to Figure 4.6, the crown displacement uy is larger than the wall displacement ux.
The reason for this ovalisation of the tunnel cross-section is that the layers beside the
tunnel experience a larger tangential strain than the layers above the crown. This is such
because the composite stiffness perpendicular (i.e., Eyy = E2) to the layers is higher than
parallel thereto (i.e., Exx = E1, cf. Section 4.4.2).
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Figure 4.5. Discrete models for a rock mass consisting of alternating, 0.05 to 0.8 m thick
competent and weak layers.

(a) (b) A

0.1

0.02

Bl

—— homogenised —— w=08m —o— w=04m —— w=02m —— w=01m —— w=005m

Figure 4.6. (a) Horizontal wall displacement and vertical crown displacement as a function
of the support pressure, (b), magnitude of the displacement vector along an unsupported
tunnel boundary according to the homogenised model (red line) as well as according to the
discrete models of Figure 4.5 (black lines; a=5 m, ogo=10MPa, xn=xw=0.5,
En=10GPa, ch=5MPa, Ew=1GPa, cw=0.5MPa, vi=vw=0.3, @n=@w=25°
Wh = Ww=5°).
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w=005 m homogenised

Ym] 4 Yim] o

yy.h Ozh Plastic zone

Figure 4.7. Principal stress orientation as well as stress field beside the tunnel and above
the crown according to the homogenised model (r.h.s.) and to the discrete model of 0.05 m
thick alternating layers (l.h.s.) for 0a=5.2MPa (a=5 m, oo= 10 MPa, xn=xw = 0.5,
En=10GPa, ch=5MPa, Ew=1GPa, cw=05MPa, vh=vw=0.3 @n=¢w=25°
Wh = Ww = 5°).

homogenised homogenised

5.2 MPa
2.4 MPa

g,=
g,=

o, = 4.6 MPa

o, = 1.34 MPa

0 MPa

g, =4.0 MPa

ca

Figure 4.8. Plastic zone and deformed mesh (magnified by factor 20) at different support
pressures 0. according to the homogenised model as well as to a discrete model of 0.056 m
thick layers (red: plastic points; blue: elastic points; a =5 m, go = 10 MPa, xn = xw = 0.5,
En=10GPa, ch=5MPa, Ew=1GPa, cw=0.5MPa, vi=vw=0.3, @n=q@w=25"
Wh = Ww = 5°).
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The ovalisation is recognisable already in the elastic range (i.e., for g2 > ca. 5.8 MPa in the
present example), where the radial uar and the tangential displacement ua: as well as the
tangential stress ot along the tunnel boundary (i.e., as a function of 8 = 90° — 8, with g8 after
Fig. 4.6b) can be calculated after Hefny and Lo [54]:

C242(p+7,) — 27272 —4(, + 7,)c05(26)

o = o,—0.)+0., 49
© (1477 -2y,c08(20))(1+ 2 -2, c08(20)) " ° AL (4-9)
a(o, -0,
U, = M((?ﬂﬂz ~7202) + (716, = 7,6,)c08(20)), (4.10)
2(71_72)
and
u =M(y5—75)cos(29) 4.11)
a,t 2()/1_)/2) 2™ 12 ’
with
a,—1 a, =1
= 1, == 1, 412
4 a1+1’ |}/1|< V2 a, +1 |}/2|< ( )
ool :%, o +a? :2812—*833, (4.13)
22 22
6 :(1+7’1)132 _(1_71)ﬁ1’ 0, :(1+72),B1 _(1_72)132’ (4.14)
P :(1+71)ﬁ2 +(1_71):B11 P3 :(1+72):B1 +(1_72)ﬂ21 (4.15)
B =S, _8220‘12’ B =S, —8220(22, (4.16)

and S12, S22, S27 and Ss3 after Section 4.4.2. (Note that the displacement and the tangential
stress along the tunnel boundary for a given support pressure, which originates from Hefny
and Lo [54], was corrected in this chapter. The tangential stress obtained with the original
formula of Hefny and Lo [54] amounts to zero and the displacements are unequal to zero
for ga = 0o, which is obviously wrong.) According to Equation (4.9), the tangential stress is
slightly higher in the crown than in the side wall (cf. Fig. 4.7), while the lowest tangential
stress occurs at about 8 = 40°.

With decreasing support pressure, yielding occurs first at the side wall and this in the hard
rather than in the weak layers (see results for 0. = 5.2 MPa in Fig. 4.8). This result is
somehow surprising at the first glance because the hard layers are subjected to the same
tangential stress as the weak layers (oyy,w = 0yy,n = 16.0 MPa; Fig. 4.7) and the latter exhibit
a lower strength. The hard layers fail first because of the constraint they impose to the
lateral (horizontal) extension of the weak layers, which results to a very low radial stress
(oxxh = 0) in the hard layers (cf. Section 4.4.2). It should be noted that, at 02 = 5.2 MPa, the
hard layers are subjected to even higher tangential stresses than at the side wall
(oxx,n = 26.6 MPa, cf. Fig. 4.7), but remain elastic; this is such because of the high minimum
principal stress (the radial stress at the crown corresponds to the support pressure, i.e.
Oy.n = 5.2 MPa both in the hard and in the weak layers; Fig. 4.7).

A further decrease in the support pressure oa results in yielding of the weak layers within a
second plastic zone that starts developing at B=45° - @uw/2 = 32.5° (see results for
02 =4.6 MPa in Fig. 4.8). At this angle (which corresponds to the angle between the
maximum principal stress and the planes of anisotropy), the composite exhibits the lowest
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uniaxial compressive strength (Section 4.4.2). Therefore, one might expect that failure, due
to the decrease in support pressure, would first occur at this angle 8 and not at the side
wall of the tunnel. However, due to the different stiffness in horizontal and vertical direction
(E1>> E2), the tangential stresses in this area (at 8 =40°) are reduced, leading thus to a
later failure.

As the support pressure g. decreases further, the hard layers reach failure also at the
tunnel crown (see results for 0. = 4.0 MPa in Fig. 4.8) and afterwards the three plastic
zones increase in size. Due to the direction-dependent strength of the composite (cf. Fig.
4.4), the second plastic zone does not increase uniformly and symmetrically. As soon as
in certain areas both the weak and the hard layers reach their failure criterion, the
deformations increase significantly in these areas. This is for example the case, when the
second plastic zone meets the third plastic zone (at 02 = 2.4 MPa in Fig. 4.8), thus leading
to high deformations in the area of the crown (see u at 8 = 10 — 25° in Fig. 4.6b).

Further insight into the model behaviour and into the effect of the parameters of the hard
layers provide the computational results of Figure 4.9. Specifically, the figure shows for the
same parameter set as Figures 4.6 to 4.8 as well as for four additional parameter sets (xn,
En, cn, @n; given in the leftmost column):

— the GRC at the crown and the side wall, including for comparison the GRC in the
absence of the hard layers (dashed line; I.h.s diagrams);

— the magnitude of the displacement vector along the tunnel boundary for g = 0 (middle
diagrams); and

— the plastic zones at support pressures of 0 to 5.2 MPa (r.h.s. diagrams).

The following conclusions can be drawn:

— The hard layers have a considerable stabilising effect (compare dashed with solid lines
in the I.h.s. diagrams).

— A decrease in the thickness fraction of the hard layers (from xw/xw = 1 to 0.25) results in
a less pronounced but still remarkable stabilising effect. Particularly, the first and the
third plastic zones (developing at the side wall and the crown of the tunnel, respectively),
in which the hard layers reach failure, increase considerably, as the latter are more
loaded (compare, e.g., results for 0. = 5.2 MPa in Figs. 4.9a and 4.9b).

— A decrease in the stiffness of the hard layers from E, = 10 to 2 GPa results to an overall
lower stiffness and larger displacements. As the contrast in E of the weak and the hard
layers is smaller than before, the stiffness in horizontal direction (parallel to bedding) is
only slightly higher than the one in vertical direction (perpendicular to bedding) and,
therefore, the displacement distribution in the elastic range is nearly uniform along the
tunnel boundary. Therefore, the weak layers reach failure first (at
B=45°— w2 =32.5°; see results for 02=5.2 MPa in Fig.4.9c). With a further
decrease in the support pressure, the non-uniformity of the displacements in the tunnel
profile increases (compare uy and ux in lLh.s. diagram of Fig. 4.9¢c), due to the
considerable direction-dependent strength of the composite (cf. Section 4.4.2).

— A decrease in the cohesion of the hard layers to c» = 3 MPa leads to a more extended
plastification of the composite and thus to considerably larger displacements (Fig. 4.9d).
Particularly, the plastic zones, in which the hard layers reach failure, increase
considerably.

— An increase in the friction angle of the hard layers (from ¢n = 25° to 35°) results
expectedly in smaller displacements (Fig. 4.9¢e). However, the effect of the friction angle
of the hard layers is rather small compared to the other factors discussed above.

In conclusion, due to the strength and stiffness anisotropy of a stratified rock, a tunnel drive
parallel to the bedding is characterised by a very non-uniform deformation of the profile.
Principally, the largest deformations occur at locations where the layers are almost (but not
exactly) parallel to the excavation boundary (i.e., in the crown for a horizontal stratification).
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Figure 4.9. GRC (l.h.s. diagrams), magnitude of the displacement vector along the tunnel
boundary for o2 = 0 (middle digrams) and plastic zone (r.h.s. diagrams; a=5 m,
0o=10MPa, ch=5MPa, Ew=1GPa, cw=0.5MPa, vi=vw=0.3, @n=q¢w=25°
Wh = Ww=5°).

The displacement distribution may be even more non-uniform if the in situ stress field is
non-hydrostatic; for example, according to Hefny and Lo [54], the crown displacement
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increases, while the side wall displacement decreases with decreasing initial stress ratio
Ko.

Development of nomograms

This section develops dimensionless diagrams for the minimum, average and maximum
magnitude of the displacement vector of the tunnel boundary.

The magnitude of the displacement vector in a specific location 8 of the tunnel boundary
depends on all parameters of the problem under consideration:

u= f(Xh:Ehthr(Ph’O'd,h"//h’Xw!EwJVw:(”w’o'd,w:‘//wio'o’aafa)- (4.17)

A dimensional analysis in combination with the findings of Section 3.2 and with the general
property of elasto-plastic continua, according to which the displacements are inversely
proportional to Young's modulus [60], suggests that the displacement u can be expressed
as follows:

E
u (ﬁ,—”,ﬂ,ﬁ,&wmﬂhﬂ//h,vw,cﬂw,V/wJv (4.18)
O,

uw,2D

where uw2p is the radial displacement of a tunnel crossing only weak rock and can be
computed using known closed-form equations (e.g., those of [60]). As the aforementioned
property of elasto-plastic continua was proven only for an isotropic material, the
correctness of the normalisation of Equation (4.18) was checked by performing a series of
numerical calculations: As can be seen from Figure 4.10, the displacements u/uw,2o
obtained for different values of the initial stress 0o and the Young’s modulus of the weak
layers Ew fall on one single curve.

aim Xl = 111 Vy=v, =03
0.3 E./E, =10 gy, = variable

= Oy /Ogy = 10 0, = variable

025 (%% 04,/0y=0.157 0, = variable

M ¢,=9,=25° E, = variable
0.2 Wy =, =5°

0.15

01 1°

0.05 |

0 . ‘ >
0 30 60 90 B[

Figure 4.10. Normalised magnitude of the displacement vector along the tunnel boundary.

In order to reduce the computational effort, the numerical analyses were only carried out
for specific ground parameters (according to Table 4.1). For the sake of simplicity, only
Poisson’s ratios of the hard and the weak layers amounting to 0.3 will be considered.
Moreover, it can be assumed that the dilatancy angles wn and ww are interconnected with
the friction angles. Furthermore, use will be made of the fact that weaker materials are
generally also softer, exhibiting a Young's modulus in the order of 500 to 1000 times the
uniaxial strength, which means that solely specific moduli ratio Ex/Ew have to be considered
for given ratio gan/oaw (cf. Section 3.3).

As the friction angle @n of the hard layers has a rather small influence on the tunnel
displacements (cf. Section 4.2.3) and, for given cohesion of the hard layers, the assumption
of a lower friction angle is on the safe side, the dimensionless diagrams were worked out
only for ¢n = @w = ¢ = 20° or 30° although ¢ is usually higher than ¢@u.

In order to cover a wide range of parameters, but to reduce the computational effort

anyway, only specific values of the thickness fraction xn/xw, of the strength ratio ggn/Oaw
and of the normalised support pressure ga/0o will be considered. The latter was chosen
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such as to cover the practically important part of the GRC (at gas =0, 0a2=0.100 and
0a3 = 0.200).

Bearing in mind that some of the parameters have been fixed, the maximum, minimum and
averaged displacement along the tunnel boundary depend on the following parameters:

U ax ’ Ui ’uaverage _ f[o'd,w ]ﬁ’i’ G4, ’i’(oj' (419)
Uyop Uwop Uyop o, X, E, Ogw %o

The nomograms of Appendix | show these three normalised displacement values as a
function of the normalised strength guw/0o of the weak layers in a series of figures. Each
figure applies to a certain parameter set (0a/00, Od,n/Oaw, Xw/Xw) and contains a number of

diagrams (each applying to another set (@, Ex/Ew)).

As the normalised displacements on the |.h.s. of Equation (4.19) are equal to 1 in the
absence of hard layers, the nomograms of Appendix | show directly the stabilising effect of
the hard layers.

For an unsupported tunnel, the ratio u/uw,2o decreases (i.e., the stabilising effect becomes
more pronounced) with decreasing normalised strength ouw/0o of the weak layers.
Therefore, the nomograms are useful particularly for squeezing rocks. For large values of
04w/00, the weak and the hard layers behave elastically and the normalised displacements
remain constant. In this case, the displacements can be calculated also after Hefny and Lo
[54], but the nomograms can be used for a fast estimation of the tunnel displacements.

Table 4.1. Overview of the considered parameter ranges for the nomograms.

Xn/Xw [-] 1/8-2
Oan/Odw [-] 2 6 10
EwEwl[-] 1-4 3-12 5-20
Vi = v [-] 0.3
®=¢n=ou[] 20; 30
1 for @n = @uw = 20°
Wh = Ww[°] 10 for @n = @w = 30°
(according to [68])
04/00 [-] 0;0.1;0.2

Parameters of an equivalent isotropic material
4.2.51 Procedure

The response of a transversely isotropic material to tunnel excavation is very different from
that of an isotropic material. It is thus obvious that an “equivalent” or "practically equivalent"
isotropic material cannot exist. The notion of "equivalent material" is used here for simplicity
and only in the following sense: It is equivalent in the sense that its (uniform) excavation-
induced displacement is equal to the maximum, to the average or to the minimum
displacement of the transversely isotropic rock. In spite of its obvious limitations, such an
equivalent material model is valuable because it allows to determine an upper and a lower
limit of the deformations of the profile.

The parameters of the equivalent isotropic elasto-plastic material can be determined
analogously to Section 3.3, but using the nomograms of Appendix I. However, contrarily to
Section 3.3, the displacements in a tunnel drive parallel to the bedding are very non-uniform
along the tunnel boundary, which makes the determination of equivalent parameters more
difficult. In the following, the procedure will be described based upon an example.

Section 4.2.3 showed that the bigger the contrast in the mechanical parameters of the weak
and of the hard layers is, the less uniform the displacements of the tunnel profile will be.

November 2019 95



96

1664 | On the variability of squeezing behaviour in tunnelling

Hence, an extreme case with Ex/Ew = 20 and cn/cw = 10 will be considered here, for which
the non-uniformity of the displacement-distribution is considerable (Fig. 4.11a). For design
purposes, usually the range of the displacements is assessed, considering therefore the
maximum and the minimum displacement of the tunnel profile. (The consideration of the
average values might make sense for dimensioning a stiff lining. Preliminary computational
investigations show that the rock pressure distribution is approximately uniform even in a
transversely isotropic rock; Fig. 4.11b.)

a b
(a) oaa (b)
6
0.12 N—W‘
5 .
0.1 \/”‘m
—_ ™ 4 4
0.08 | a
= =
0.06 | a
| 2 p
0.04 8 8 —— d=06m
0.02 - 1 -8 d=03m
0 , . > 0 M- ‘ >
0 30 60 90 0 30 60 90
B B Il

Figure 4.11. (a) Magnitude of the displacement vector along the tunnel boundary for ga=0;
(b) Radial pressure along a stiff lining (a = 5 m, oo = 10 MPa, xn/xw = 0.25, En = 20 GPa, cn
= 10 MPa, Ew=1 GPa, cw= 1 MPa, va = vw = 0.3, @on=@w= 20°, wnh=ww= 1°, lining
thickness 0.3-0.6 m, Young’'s modulus of concrete = 30 GPa, frictionless rock-lining
interface, 20% pre-deformation).

The GRC of the equivalent isotropic model can be written as follows:

a
E eq O-O O-O

o, -a O, O4e
u, = = .fZ{_a’ djq’veql (Deq' l//eqj’ (420)

where Eeq, veq, Odeq, Peg and Weq denote the equivalent Young’'s modulus, Poisson’s ratio,
uniaxial compressive strength, friction angle and dilatancy angle. Parameters are sought
that reproduce either the minimum or the maximum displacement of the transversely
isotropic rock mass.

In the following, for the sake of simplicity, only the case of equal Poisson’s ratios
(Veq = vn = vw) Will be considered. The equivalent Young’s modulus Eeq can be calculated
by setting the displacement of an elastic unsupported isotropic rock mass equal either to
the maximum (umax; in order to estimate an upper limit of the displacements of the
transversely isotropic material) or to the minimum (umin; in order to estimate a lower limit of
the displacements) magnitude of the displacement vector in an elastic, transversely
isotropic rock mass:

1+
( uezz,r"'us,t) = = 0o @, (4.21)

eq,max

(o, +u2) - : 0, (4.22)

min eq,min

where the radial and tangential displacements of the transversely isotropic rock mass (ua,r,
Uat) can be calculated after Hefny and Lo [54]; Egs. 4.10 and 4.11).

Setting the maximum displacement umax (or the minimum displacement umin) of the
transversely isotropic material (Umax and umin can be obtained from the nomograms of
Appendix |) equal to those of the equivalent isotropic model (Eq. 4.20) for three selected
values of the support pressure (0a1, Oa2, Oas; preferably in the practical relevant range),
provides a system of three nonlinear equations for the unknown plasticity parameters
O'd,eq/UO, QPeq and Weq:
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o, -a x, E o4, O o
0 h h d,h dw ak
= .f[_7_7_’_’_7Vh’§0h"//h’vw7§0w’l//W]

max E X E o loy O,
w w w d,w 0 0 (for k= 1, 2, 3), (423)
O, -a O 94d,eq,max
= f  — Ve s Yeq,max’ eq,max
Eeq,max 2[ 5, o, q7 Peq, Veq, ]
0 - ali:.a .f(ﬁ’%’ﬂ’ﬁyﬂ’vh,(/)h’(//h,vw,gow,y/WJ
X o o, O
w w Tw Fdw 0 0 (fork=1,2, 3). (4.24)

Oy -a f O Ud,eq,min
| &, ———
Oo Oo

4 Veq 4 goeq,min ’ l//eq,mfnJ

eq,min

Applying this procedure to the parameters of the example of Figure 4.11 provides the
equivalent parameters given in Table 4.2. Figure 4.12 compares the two GRCs of the
isotropic rock mass (obtained with the two sets of equivalent parameters — one set based
upon umin and one set based upon umax) with the GRCs of the transversely isotropic material
and shows that the equivalent isotropic model reproduces well the maximum or minimum
displacement of the composite material and this even in the case of a big contrast in the
mechanical parameters of the layers.

Table 4.2. Parameters of the hard and weak layers and corresponding parameters of the
equivalent isotropic material.

X E v c P (7]}
[-] [GPa] [ [MPa] [] []
hard layers 0.20 20 0.3 10 20 1
weak layers 0.80 1 0.3 1 20 1
Equivalent isotropic material
fitted based upon:
Umax - 1.26 0.3 212 20 1
Unmin - 2.95 0.3 3.45 1 1

0.12 4
01 — — solution with equivalent parameters
’ 1". ——  exact solution
008 X
E sx e umax
> 0.06 1|=‘_ \,\ o
5\_'_ “a, 'min
0.04 "’\* \
e - e
0.02 e T
o N TR : .i‘“ﬁ; h
0 T T T T %"_>
0 2 4 6 8 10 0, [MPa]

Figure 4.12. Maximum and minimum displacement at the tunnel boundary of a cylindrical
tunnel as a function of the support pressure, obtained with the exact model and with the
isotropic model considering equivalent parameters (a = 5 m, go = 10 MPa).

4.2.5.2 Application examples

The value of using the proposed equivalent isotropic model will be illustrated by means of
two tunnelling problems (considering an initial hydrostatic stress field of 10 MPa): (1) The
longitudinal displacement profile of an unsupported tunnel (Fig. 4.13a); (2) The boundary
displacements of an unsupported tunnel with a horseshoe profile assuming plane strain
conditions (Fig. 4.13b).
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These problems were solved numerically, either using the exact transversely isotropic
material model of Section 4.2.2 (with the parameters given in the two first rows of Table
4.2) or considering an equivalent isotropic rock mass (with the parameters given in the last
two rows of Table 4.2). (Numerical details for problem 1 can be found in Section 5.1.)

Figure 4.13 shows that the exact solution lies in-between the two solutions obtained

considering an isotropic material. Using latter allows thus to bound satisfactorily the
response of transversely anisotropic rock mass.

0.12 | 10 Y
0.1 -o-—o—o;o-...‘.l u s : i
I r4
0.08 ‘ |
E bt 6 | ¥
=
t
|

P '-..'\

E
0.06 4=t ; .
*"ﬁ.‘ al R
0.04 -|
0.02 27 _ /
—_— )
0 T T e ———> 0 T T T — T
20 10 0 -10 -20 zal] 0 002 004 006 008 01 012 u[m

— — solution with equivalent parameters ® U + Ui

exact solution

Figure 4.13. (a) Maximum and minimum longitudinal displacement profile of an
unsupported tunnel. (b) Maximum and minimum magnitude of the displacement vector
along the unsupported tunnel boundary of a horseshoe profile, obtained with the exact
model and with the equivalent isotropic model (parameters after Table 4.2).

Conclusions

This chapter investigated the squeezing behaviour during tunnelling parallel to a sequence
of thinly alternating weak and hard rocks, taking the rock mass as a homogeneous,
transversely isotropic material. By means of application examples, the rock response to
tunnelling was discussed, by specially focussing on the non-uniformity of the displacements
in the tunnel profile, which may be considerable in certain cases. In order to facilitate the
estimation of the displacements along the tunnel profile for given geotechnical conditions,
design diagrams were developed that represent a valuable tool for engineering practice,
as they enable to determine easily the maximum and minimum displacements in the tunnel
profile (far behind the tunnel face) for a wide range of geotechnical conditions.

Furthermore, these diagrams allow determining the parameters of an equivalent isotropic
rock mass based upon the maximum or the minimum displacement of the transversely
isotropic material. Considering an isotropic material with these parameters makes it
possible to estimate the range of deformations or pressures in problems that do not meet
plane strain or rotationally symmetric conditions.

Influence of the heterogeneity scale on the distribution of
the ground displacements in the profile

Introduction

Alternating weak and hard layers lying parallel to the tunnel axis may lead — depending on
the heterogeneity scale (see Section 4.1) — to a considerable non-uniformity of the
displacement distribution in the tunnel profile. The present section investigates: (i), under
which conditions the homogenised model of Section 4.2 is adequate; (ii), in which cases
the heterogeneity of the ground can be neglected in the design; and, (iii), whether the
simple equation of Section 3.4.3 can be applied to the case of alternating layers that strike
parallel to the tunnel axis.
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Adequacy of the homogenised model

Obviously, the homogenised model of a transversely isotropic rock mass is adequate if the
layers are sufficiently thin relative to the tunnel radius. It is also obvious that if the contrast
in the mechanical parameters of the layers is small, then homogenisation is adequate even
for relatively thick layers. The bigger the contrast in the mechanical parameters, the thinner
the layers must be in order to consider the rock mass as a homogeneous material in the
scale of the tunnel cross-section.

This will be illustrated by means of computational examples. The ground response to tunnel
excavation is analysed by plane strain numerical calculations for a series of thicknesses of
the hard h and the weak w layers as in Section 4.2.3. Besides an initial stress go of 10 MPa
(which in combination with the weak layer parameters results in severe squeezing
conditions) also a low initial stress was considered (0.75 MPa) in order to check, whether
the statements of this chapter also apply to slightly (or non-) squeezing conditions. (For the
lower initial stress and the assumed strength parameters, both the hard and the weak
layers behave elastically.) For simplicity, an unsupported tunnel crossing equally thick
weak and hard layers will be considered first; the effect of the thickness ratio h/w will be
discussed later.

Figure 4.14 shows the deformed tunnel boundary (red dotted line), the stress trajectories
(crosses) and the plastic zone (grey) for a series of w/a-ratios, two only slightly different
layer sequences ("case A/B"; see sketches at the top) and an initial stress of 10 MPa. For
comparison, also the plastic radius of a homogeneous isotropic material (with the
parameters either of the weak or of the hard layers) is presented (green lines). Figure 4.16
shows the distribution of the magnitude of the displacement vector along the tunnel
boundary for the same w/a-ratios as Figure 4.14 and the mentioned cases A and B. Figures
4.15 and 4.17 present the same results for the lower initial stress of 0.75 MPa. The following
conclusions can be drawn from these figures:

— The exact location of the layers in the tunnel profile can affect considerably the
displacement distribution, particularly if the layers are not very thin; compare Case A
(hard layer at the springline) with Case B (weak layer at the springline) in Figures 4.14
to 4.17.

— The principal stress axes deviate from the radial and tangential direction, indicating an
arching in the weak layers against the hard layers, leading thus to an additional loading
of the latter (Figs. 4.14 and 4.16).

— The stabilising effect (but also the overstressing) of the hard layers is particularly evident
for thin layers under a high initial stress; the plastic zone would be considerably more
extended in the absence of the hard layers and much more narrow in the absence of
the weak layers.

— Due to arching, the maximum displacements for o = 10 MPa amount to about 25% of
those that would develop in the absence of the hard layers (Fig. 4.16). The stabilising
effect of the latter is smaller for oo = 0.75 MPa (Umax/uw,20 = 0.55; Fig. 4.17).
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Figure 4.14. Convergence u (magnified by factor 5), plastic zone (hatched area) and
principal stress orientation for different thickness and location of the weak and of the hard
layers (0o=10MPa, a=5 m, hw=1, En=10GPa, cn=5MPa, Ew=0.5GPa,
cw= 0.5 MPa, vh = vw = 0.3, ¢n = w = 25°, wn = Pw = 5°).
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Figure 4.15. Convergence u (magnified by factor 250), plastic zone (hatched area) and
principal stress orientation for different thickness and location of the weak and of the hard
layers (co=0.75MPa, a=5 m, h'w=1, E,=10GPa, ch=5MPa, Ew=0.5GPa,
cw= 0.5 MPa, vh = vw = 0.3, ¢n = w = 25°, wnh = ww = 5°).

November 2019 101



102

1664 | On the variability of squeezing behaviour in tunnelling

— With decreasing layer thickness, the results of the discrete models converge to those of
the homogenised models (Figs. 4.16 and 4.17). In these example, homogenisation is
adequate if w/a = h/a < 0.16.

— Expectedly, the displacements along the tunnel profile are very non-uniform even for
the homogenised model. This is such because the composite stiffness perpendicular to
the layers is lower than parallel thereto (cf., e.g., [55], [73]).

Case A Case B

0.25

ul U, op [m]

0 30 60 90 0 30 60 90
Bl Bl

—— wla=1 —o— wa=032 —— wa=016 —— w/a=004 —e— wa=0.01 —— homogenised
Figure 4.16. Magnitude of the displacement vector along the tunnel boundary according to
the homogenised model (red line) as well as according to the discrete models (black lines;

cf. inset of Fig. 4.14; co=10MPa, a=5 m, h/w=1, En=10GPa, ch=5 MPa,
Ew=0.5GPa, cw= 0.5 MPa, vh = vw = 0.3, on = w = 25°, Wn = ww = 5°).

Case A Case B

0.6

u/u, o [M]
ufu,, o [M]

0.1 0.1 -

B[] B[]
—— wla=1 —-— wa=032 —— wa=016 —— w/a=004 —— wa=0.01 —— homogenised

Figure 4.17. Magnitude of the displacement vector along the tunnel boundary according to
the homogenised model (red line) as well as according to the discrete models (black lines;
cf. inset of Fig. 4.15; co=0.75MPa, a=5 m, h/w=1, En=10 GPa, cn=5 MPa,
Ew=0.5GPa, cw= 0.5 MPa, vh = vw = 0.3, on = @w = 25°, Wn = ww = 5°).

In order to estimate the applicability limit of the homogenisation, it is sufficient to consider
the maximum and the minimum displacement at the tunnel boundary. The I.h.s. diagrams
of Figures 4.18 and 4.19 show (for oo=10and 0.75MPa, respectively) these
displacements as a function of the weak layer thickness w/a and of the thickness-ratio h/w.
The homogenised solution (which is strictly correct only for w/a > 0 or h/a > 0) is marked
by the red symbols on the ordinate axis.

The middle and r.h.s. diagrams of the Figures 4.18 and 4.19 show the ratio Umax/Umax.hom as
a function of the normalised layer thickness w/a and h/a, respectively, for a series of
thickness ratios h/w. The error of the homogenised solution is zero if the ratio
Umax/Umax,hom = 1 @and increases with the ratio Umax/Umax,hom.
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Figure 4.18. Maximum umax and minimum umin displacements (normalised by the
displacements of a homogeneous weak ground uw,2p), compared with the displacements
of the maximum Umax,nom @and minimum Umin,nom displacements of the homogenised solution
(co=10MPa, a=5m, En=10GPa, chn=5MPa, Ew=0.5GPa, cw=0.5MPa,
Vh =vw=0.3, on =@w =25°, wnh = ww = 5°; cases A and B: see inset at the top of Fig. 4.14).
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Figure 4.19. Maximum umaex and minimum umin displacements (normalised by the
displacements of a homogeneous weak ground uw,2p), compared with the displacements
of the maximum Umax,nom @and minimum Umin,nom displacements of the homogenised solution
(0o=0.75MPa, a=5m, En=10GPa, c¢h=5MPa, Ew=0.5GPa, cw=0.5MPa,
vh=vw=0.3 @n=@w=25° wn = ww = 5°% cases A and B: see inset at the top of Fig. 4.15).

November 2019



4.3.3

1664 | On the variability of squeezing behaviour in tunnelling

From these diagrams one may conclude that the error increases with h/w, particularly in
the case of the high initial stress (Fig. 4.18); for the low initial stress of 0.75 MPa, the
displacements Umaxnom are very close to uw,2p. The homogenised solution Umax,nom becomes
considerably smaller than uw,2p only when the weak layers begin to yield. Consequently,
the case of oo=10 MPa is decisive for estimating the applicability limit of the
homogenisation.

Analogous to Section 3.2.4, a general statement can be made based on the ratio h/a (r.h.s.
diagrams of Fig. 4.18): For h/a < 0.05, the ratio Umax/Umaxnom is smaller than 1.25 (and
consequently the error is less than 20%) for all h/w-values. Would the rock parameters,
however, be less different than in the examined extreme case, the error when using the
homogenised model would be smaller.

If the layers were oriented perpendicular to the tunnel axis, homogenisation would be
adequate for h/a < ca. 0.10 (see results of Section 3.2.4 for o = 10 MPa). In the present
case (strike parallel to the tunnel axis) the layers would have to be thinner. Homogenisation
is thus easier in the case of tunnelling perpendicular to the layers, because the stabilising
effect of the hard layers is more pronounced (umin becomes considerably larger and Umax
smaller, so that the values are closer to the homogenised solution).

Due to this smaller stabilising effect of the hard layers in the case of tunnelling parallel to
the layers, the influence of the brittle behaviour of the hard layers is less pronounced than
in Section 3.2 and was therefore not considered here.

Tunnelling parallel to the interface between a weak and a competent
formation

In this section, the theoretical case of infinite layer thickness (w/a > « and h/a > «) will
be investigated. The distribution of the deformations in the tunnel profile depends on the
distance of the formation interface from the tunnel: If the interface intersects (or is close to)
the tunnel, then the displacements of the tunnel profile will be non-uniform (cf. Fig. 4.20).

This section investigates numerically, how far the formation interface has to be in order that
the heterogeneity of the ground can be neglected (i.e., in order to assume uwz2p for the
weak formation or un,2p for the hard formation, respectively). A weak formation overlain by
a competent formation will be considered. The formation interface is located at a distance
H above the tunnel axis (with H < 0 meaning that the interface lies below the tunnel axis).
Figure 4.20 shows the deformed profile (red dotted line), the stress trajectories and the
plastic zone for a series of H-values. For the considered rock parameters and initial stress
(10 MPa), the competent formation has a remarkable effect only if it crosses partially the
tunnel.

The Figure 4.21 shows the results of a parametric study into the effect of the distance H of
the hard formation to the tunnel axis. Specifically, the diagram shows the maximum (Umax)
and the minimum (umin) displacements of the tunnel cross-section, normalised by the
convergence uw,2p (upper diagrams) and un,2o (lower diagrams), which would develop in a
homogeneous weak or competent ground, respectively. If H > 5a, the stabilising effect of
the hard formation is negligible (umin/uw,20 = 0.8; upper diagram of Fig. 4.21) and, vice versa,
if H < -5a, then the unfavourable effect of the nearby weak formation can be neglected
(umaxlun,2o0 = 1.2; lower diagram of Fig. 4.21). These results can be regarded as generally
valid, because they assume a big contrast in the mechanical parameters of the two zones
and a high initial stress.
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Figure 4.20. Convergence u (magnified by factor 2.5), plastic zone (hatched area) and
principal stress orientation for different distances H of the hard formation to the tunnel axis
(co=10MPa, a=5 m, En=10GPa, chn=5MPa, Ew=0.5GPa, cw=0.5MPa,
Vh=Vw=0.3, ¢n = @w = 25° Wwn = Pw = 5°).
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Figure 4.21. Maximum umax, minimum umin displacements of the tunnel profile (normalised
by the convergence uw,2p or un2p which would develop in a homogeneous weak or hard
ground, respectively) for different distances H of the hard formation to the tunnel axis (cf.
Fig. 4.20; 0o =10MPa, a=5 m, En=10 GPa, ch=5MPa, Exw= 0.5 GPa, cw= 0.5 MPa,
vh =V = 0.3, @n = w = 25° wn = ww = 5°).

Alternating weak and competent layers of medium thickness
In this section, it is investigated whether the equation

u u
Uinax =5- [1 _ _maxhom ] 4 —maxhom , (4.25)
uw,2D uw,2D uw,2D
where
S=1- e_0‘4W/pW’2D , (426)

which is practically identical with the one proposed in Section 3.4 for tunnelling
perpendicularly to alternating weak and hard layers, can also be applied for estimating the
maximum displacements in the case of tunnelling parallel to the layers. The red solid lines
in the middle diagrams of Figures 4.14 and 4.15 show the displacements obtained with this
equation. It is remarkable that this simple equation underestimates only slightly the
maximum displacements for w/a smaller than a value of ca. 2 (by less than 25% for
0o =10 MPa, and even lesser for o = 0.75 MPa). A better agreement could be achieved
by selecting another constant (larger than 0.4) in the exponent of the last r.h.s. term of
Equation (4.26). A definitive statement cannot be made, however, without checking
Equation (4.25) for a wide parameter range, analogously to Section 3.4.

Conclusions

The homogenised model is adequate only if the hard layers are thinner than 5% of the
tunnel radius. As this criterion is valid both for a tunnel parallel and a tunnel perpendicular
to the layers, it seems that this criterion is applicable for any orientation of the layers to the
tunnel axis.

For very thick formations, the influence of the adjacent hard or weak formation can be
neglected, if the weak or the hard rock formation lies at a distance to the tunnel axis of at
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least 5 times the tunnel radius. Otherwise, numerical calculations have to be performed in
order to estimate the displacements of the tunnel profile.

For medium layer thicknesses, depending on the location of the layers in the tunnel profile,
the tunnel displacements may vary considerably. Therefore, numerical calculations have
to be performed that consider the exact location of the weak and the hard layers in the
profile.

Response of a schistous rock mass striking parallel to the
tunnel axis

Introduction

From the literature it is well known that planes of anisotropy may affect rock behaviour
adversely, particularly if their strike direction forms a small angle with (or is parallel to) the
tunnel axis ([9], [25]). This chapter will thus focus on the most adverse situation, which is
tunnelling parallel to schistosity; the influence of the angle between schistosity plane and
tunnel axis will be investigated in Section 5.1.

The influence of the planes of anisotropy, especially the schistosity planes, on the tunnel
displacements was already described in a number of publications. On the one hand, the
measured displacements occurring in some particular tunnel sections were examined
empirically as well as numerically ([29], [74], [75], [76], [77], efc.; see also Section 2.1). On
the other hand, the influence of the schistosity for the tunnel problem was investigated
analytically [78] and numerically ([30], [45], [79], [80], [81], etc.). All investigations could
show that the geometrical and mechanical properties of schistosity play an important role
for the development of the displacements.

The influence of the discontinuities on the tunnel displacements is investigated in the
literature either by continuum or by discontinuum models. In the discontinuum models,
planes of anisotropy are explicitly represented in the numerical model, while in the
continuum models, a homogenised rock mass is considered. As this chapter will focus on
schistous rocks (e.g., phyllites and schists) that are characterised by a large number of
very closely spaced discontinuities, a continuum model is applied (cf. [82]). With the
continuum models, an opening of discontinuities or a complete detachment of the elements
cannot be simulated (cf. [83], [84], [85]). However, these mechanisms are relevant mostly
for stability problems (e.g., loosening or rock fall) and less for the analysis of squeezing
(where large tangential stresses around the tunnel occur). For thinly layered rocks, a
continuum model can adequately represent ground behaviour ([30], [86], [87]). Of course,
with this kind of model, the influence of spacing cannot be investigated (cf. [30]). However,
from Leitner et al. [30], it is known that the spacing may have an important influence on the
tunnel displacements. This chapter will focus on schistous rocks characterised by very
small spacing, which is the most critical case (cf. [30]).

In the current state of research a systematic, quantitative investigation of the influence of
the properties of the schistosity planes on squeezing behaviour is missing. Furthermore,
one misses practical guidelines on how this influence can be considered in the design.

From the mechanical point of view, schistosity can be conceived as the borderline case of
a stratified rock mass with extremely thin weak layers. Therefore, the constitutive model of
Section 4.2.2 could be used also in order to analyse the response of a schistous rock to
tunnel excavation. This can be seen also in Figure 4.22, which presents the uniaxial
compressive strength as a function of the angle & (defined as the angle between the
direction of the maximum principal stress and the schistosity planes). For a tunnel drive
parallel to the layers, the angle & varies along the tunnel boundary from 0° (at the crown
for a horizontal stratification) to 90° (at the side wall). Therefore, for a tunnel drive parallel
to the planes of anisotropy, the influence of the weak layers does not vanish with
decreasing thickness fraction of the weak layers. If the latter is very small (xw = 0.01), the
rock behaviour converges to the known behaviour of schistous rocks (which can be
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obtained analytically according to [88]). With decreasing thickness fraction of the weak
layers, the horizontal stiffness approaches the vertical stiffness of the composite, so that
E1=E2= En(cf. Egs. 4.4 and 4.5).

o4 [MPa] ,
15 1
sassessel 5
V 1o
10
L
? )
0 >
0 30 60 9 &[]
—— x,=05 —=— x,=01 —— x,=0.01 schistosity

Figure 4.22. Uniaxial compressive strength o of the stratified rock mass depending on the
direction of loading for different thickness fractions xw of the weak layers, obtained with
Lydzba et al. [62] and compared to the analytical uniaxial compressive strength for the
schistosity according to Jaeger and Cook [88] (En= 10 GPa, ch=5MPa, Ev= 1 GPa,
cw= 0.5 MPa, vh = vw = 0.3, on = w = 25°, wnh = ww = 5°).

The displacements in a tunnel drive parallel to the layers can be obtained by numerical
calculations, as in Section 4.2, with the constitutive model of the stratified rock mass. The
results (Fig. 4.23) were compared to those obtained with constitutive models for the
schistosity implemented in the commercially available software programs Plaxis ([89];
considering a Mohr-Coulomb failure criterion for the rock mass; more details concerning
the implementation and verification: see [90] and [91]) and Abaqus ([64]; considering a
Drucker-Prager failure criterion for the rock mass and determining the Drucker-Prager
material parameters with a plane strain matching to the Mohr-Coulomb parameters). The
results of all the constitutive models are in good agreement. However, if xw approaches the
value of zero, the constitutive model of Section 4.2.2 is extremely costly in terms of
computer time.

¢, =10 MPa, @, = 30°, yy, = 10°, ¢, = 1.4 MPa, @, = 40°, g, = 40°,
¢, = 0.7 MPa ¢, = 0.35 MPa
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Figure 4.23. Magnitude of the displacement vector along the tunnel boundary obtained
with the constitutive model of Section 4.2.2 and those implemented in Plaxis and Abaqus
(unsupported tunnel, a=5 m, co=10MPa, En=Ew=20GPa, ¢@w=20° ww=20°
Vh = Vw = 03)

Therefore, in Section 4.4.2, a constitutive model for the schistous rock mass is formulated.
By means of this constitutive model, in Section 4.4.3, numerical calculations (assuming
plane strain conditions) were carried out, in order to analyse the response of schistous
rocks striking parallel to the tunnel axis. Based on these investigations, dimensionless
diagrams are presented in Section 4.4.4 that allow a quick estimation of the displacements
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(occurring far behind the tunnel face) to be made for a wide range of geotechnical
conditions. Finally, Section 4.4.5 shows that considering an isotropic homogeneous model
with appropriate parameters can be very valuable in spite of its inherent limitations and
differences from a transversely isotropic rock mass.

Constitutive model
4.4.21 Formulation of the constitutive model

The mechanical behaviour of anisotropic rock mass was investigated over the last decades
by many authors, particularly by means of laboratory tests. The main focus of these studies
was the directional dependence of rock strength. An extensive review on this topic can be
found in Pietruszczak et al. [92] or Duveau et al. [93].

Besides analysing the mechanical behaviour of anisotropic rock mass, various failure
criteria have been proposed (cf. [93], [94]). Amongst these, the most representative model
is the so-called “single plane of weakness theory” proposed by Jaeger [95]. Jaeger [95]
considers a (Mohr-Coulomb) failure criterion for the rock matrix and one for the planes of
weakness:

r=c,+otan(e,), (4.27)

r=c,+otan(g,), (4.28)

respectively. In order to model the schistous rocks realistically, elasto-plastic behaviour of
the matrix should be considered (cf. [85]). Duveau et al. [93] could show that there is a
good agreement between the model of Jaeger [95] and experiments. The model of Jaeger
[95] was further developed by many authors (e.g., [96], [97]), leading however to more
complex failure criteria, which require more parameters than usually available, while the
material model of Jaeger [95] can be described by means of a small number of easily
interpretable material parameters, even in the case of anisotropy [98].

A schistous rock mass may be stiffer for loading parallel to the schistosity than
perpendicular thereto ([99], [100], [101]). For the sake of simplicity, stiffness anisotropy is
not considered here.
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Figure 4.24. REV consisting of a single schistosity plane.

Constitutive models, which consider the failure of the rock mass and the planes of
weakness according to the material model of Jaeger [95] have already been formulated
(e.g., [98], [102], [103], [104], [105], [106]) and implemented in the commercially available
software programs Plaxis [89] and Abaqus [64]. However, in Chapter 5.2, the squeezing
variability due to orientation changes of the anisotropy planes along the alignment will be
investigated, which necessitates to formulate and implement the constitutive model of
Jaeger [95] in Abaqus [64], based on the homogenisation technique (see Sections 3.2 and
4.2). This section will only show the most essential aspects of the formulation of the
constitutive model. More details concerning the implementation and validation of the
constitutive model can be found in Mezger [11].
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For the derivation of the constitutive law, a representative elementary volume (REV) is
considered, which consists of N schistosity planes and the surrounding matrix. The
schistosity planes are perpendicular to the y-axis (cf. Fig. 4.24). At failure state, an
irreversible shear strain ys;occurs due to slip along the schistosity plane. This, in turn, leads
to a normal strain perpendicular to schistosity plane, which amounts to ystanws, where ws
denotes the dilatancy angle of the schistosity (cf. Fig. 4.24). The shear strain of the REV
due to failure in the schistosity planes is equal to

Vs =N-7sis (4.29)

where N denotes the number of schistosity planes in the REV. Of course, slipping may only
occur along the schistosity planes. This means that in the 2D case, the shearing strain
increment occurs in xy-direction, while in the 3D case, it occurs in xy- and yz-direction (cf.

Fig. 4.24). In general,
Vs =AY +4Y% (4.30)

whereby the last r.h.s. term is equal to zero in the 2D case.

By definition, the variation of stresses and strains across the REV can be neglected,
meaning that the resulting strains and stresses of the homogenised medium are the
volumetric averages of the strain and stress components in the matrix and the schistosity
planes. As the thickness fraction of the schistosity planes is small in comparison to the one
of the surrounding matrix, the relations for the homogenised stress and strain increments
can be simplified as follows:

Ao, = A0, Ag,, = Aey,
do,, = 4oy, , = 4oy, s, = Ag,,  +y, -tany
AGZZ = Adzzm Agzz = AgZZm
' and ’ , (4.31)
Ar,, =At,, = AT, AV =AYy + Ay s
ATXZ = ATXZ,m A}/XZ = Aj/xz,m
Az-yz = Az-yz,m = ATyz,s A}/yz = A}/yz,m + Ayyz,s

where the subscript m denotes the strain and stress increments in the matrix and s those
in the schistosity planes. As usual in design practice, the rock will be considered as linearly
elastic and perfectly plastic, considering a Mohr-Coulomb failure criterion with a non-
associated flow rule for the schistosity and the matrix. For the matrix the stress return
algorithm after Clausen [65] will be used.

As mentioned before, in the constitutive model, a REV is considered whose schistosity
planes lie perpendicular to the y-axis. By performing appropriate coordinate
transformations, arbitrary orientations of the schistosity planes can be considered: the
stresses and the strains are transformed from the global into the local coordinate system
(where the y-axis is perpendicular to the planes of schistosity) and, after having performed
all the computations in the local coordinate system, the resulting stresses are back-
calculated into the global coordinate system. The only input needed for the coordinate
transformation is the normal vector of the schistosity planes.

4.4.2.2 Rock element behaviour

In order to illustrate the material behaviour, single element tests were performed
considering plane strain conditions. According to the analytical solution of Jaeger and Cook
[88], the uniaxial compressive strength of the schistous rock mass under a specific loading
direction is the minimum between the one governed by the matrix and the schistosity and
reads as follows:
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. 2. 2.c -
o, =min| — S ; Cm ,COS Pm | (4.32)
sin26(1-tang tans)” (1-sing,,)
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25 Analytical solution

L] Numerical calculations 5
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1

Figure 4.25. Uniaxial compressive strength ou of the REV depending on the direction of
loading, obtained with numerical calculations and compared to the analytical solution of
Jaeger and Cook [88] (E =20 GPa, cm=5.77 MPa, ¢m = 30°, ym=10° cs=0.7 MPa,
@s = 20°, ws=20° v=0.3).

The compressive strength reaches its minimum at an angle of 6 = 45-¢s/2 = 35° between
the schistosity planes and the loading direction and is given by the following equation:

_2-C,-COS @,

= esing) (4.33)

Oy

If the angle & is greater than 90° — ¢s = 70° or equals 0°, then failure in the schistosity
planes cannot occur. The analytical uniaxial compressive strength is presented in Figure
4.25 and compared with the results obtained with numerical calculations; the schistous rock
mass model (and thus the implemented elasto-plastic algorithm) behaves as expected.

Basic aspects of the schistous rock response to excavation

In this section, some basic aspects of tunnelling through schistous rock mass will be
analysed.

Considering the failure criterion of the schistosity (Eq. 4.28) and that, in the elastic state,
the maximum principal stress (in tangential direction) amounts to 200 — g2 and the minimum
principal stress (in radial direction) to 0a, the support pressure at which failure in the planes
of weakness occurs first amounts to

2% — ,

o, =20~ %s _ 59 \pPa, where m, — 1% (4.34)
m, -1 1-sin g,

and is located at 8 = 45° — ¢s/2 = 35° (Fig. 4.26; cf. [78]). The support pressure at which

failure in the matrix would occur first amounts to (assuming elastic state and thus no failure

in the schistosity):

o, = 29 ~%m _ 737 MPa, where m_ —1*sing, (4.35)

m_ -1 1-sing,
As this value is negative, it can be assumed that no failure in the matrix will occur, even for
02 = 0 MPa, as the largest deviatoric stresses occur in the elastic state. In reality, due to
the failure in the planes of schistosity, the deviatoric stresses would be smaller than in the
elastic state and thus the support pressure, at which failure in the matrix occurs, would be
even smaller.

With a further decrease in support pressure, the plastic zone increases at the segment

0° < B<90° - s (as failure at = 0° and 8 = 90° — s is not possible, cf. Section 0). Due
to failure in these areas, stress redistribution occurs around the plastic zone, so that the
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principal stress axes are not tangential and radial anymore (see results for g, = 3.5 MPa in
Fig. 4.26).

Plastic zone

Figure 4.26. Principal stress orientation as well as plastic zone for different support
pressures (a=5 m, o0o=10MPa, E=20GPa, cm=10MPa, ¢m=30° wm=10°
cs= 0.7 MPa, @s = 20°, ws = 20°, v=0.3).

Due to this stress redistribution, three areas can be distinguished with respect to the
direction of the principal axes (see results for 0. = 0 MPa in Fig. 4.26): (i) the area of the
crown of the tunnel, where the maximum principal stress is horizontal; (i) the area around
B =45° — @s/2, where the maximum principal stress forms an angle of about 45° — ¢s/2 with
the horizontal; and, (iii), the area besides the tunnel, where the angle of the maximum
principal stress to the horizontal is greater than 90° — @s. As in the area (ii), the minimum
principal stress is nearly as large as the maximum principal stress, no failure can occur
there. Furthermore, due to the fact that failure in the schistosity may only occur at an angle
B between 0° and 90° — ¢s, the failure in the schistosity can solely propagate in the
proximity of the two red lines drawn in Figure 4.26, which indicate the respective borders
of the areas introduced before. The extent of the plastic zone along these two lines is
approximately the same, so that the largest displacements occur exactly at
B =45° — @s/2 = 35° (cf. Fig. 4.27).

The influence of the rock parameters on the tunnel displacements will be discussed by the
results of a parametric study (Figs. 4.27 and 4.28).

The upper diagrams of Figure 4.27 show the influence of the schistosity cohesion on the
magnitude of the displacements along an unsupported tunnel boundary (I.h.s. diagram)
and on the plastic zone (r.h.s. diagrams). A decrease in the cohesion of the schistosity
leads to a larger extent of the plastic zone and consequently to larger deformations.
According to Equation (4.32), failure in the schistosity plane only occurs, for an unsupported
tunnel, if

¢, <o,sin2p(1-tang, tan ), where § = 45° — ¢s/2. (4.36)

Therefore, ¢s should be smaller than 7 MPa, in order that failure occurs in the schistosity
plane. For cs > 7 MPa, the displacements are equal to those occurring in the absence of
the schistosity. A decrease in ¢s may lead to a considerable increase of the displacements.
The maximum displacement along the unsupported tunnel, for ¢s = 350 kPa, may be about
2.5 times larger than those that would occur in the absence of the schistosity
(Um,20 = 0.0032 m).
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Figure 4.27. Magnitude of the displacement vector along the tunnel boundary (I.h.s.) as
well as extent of the plastic zone (r.h.s.) for varying parameters (unsupported tunnel, a = 5
m, oo = 10 MPa, E = 20 GPa, cm= 10 MPa, ¢m = 30°, ym = 10°, v=0.3).
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The middle diagrams of Figure 4.27 show that larger friction angles in the schistosity plane

lead generally to smaller plastic zones and consequently to smaller displacements. For

Ws = @s, the largest displacements occur at 8=45°—@s/2. An increase of ¢s leads
therefore to moving of the location of maximum displacement towards the crown (i.e.,
towards smaller B). Furthermore, for a high ¢s, the development of the almost vertical
plastic zone is less steep, as the latter develops at an angle 90° — ¢s to the horizontal

direction (cf. Fig. 4.26).

If the dilatancy angle remains constant and solely the friction angle of the schistosity plane
increases (lowermost diagrams of Fig. 4.27), the displacements decrease and the
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maximum displacements move towards the crown. This occurs also for decreasing
dilatancy angles (see upper diagrams of Fig. 4.28) and can be explained as follows: As the
extent of the plastic zones remains constant for decreasing dilatancy angles, the
displacement occurring in vertical direction decreases (as it amounts to ystanys) given the
same portion of displacements in horizontal direction (i.e., ys). The displacement vectors at
the tunnel boundary, therefore, experience larger horizontal than vertical displacements,
which leads to moving of the deformation shape to the left (i.e., towards smaller §).

If the cohesion in the matrix decreases to less than 5.77 MPa (for an unsupported tunnel),
failure occurs also in the matrix (see lower diagrams of Fig. 4.28). This happens in the
areas, where the schistosity cannot fail (i.e., in the areas (i) to (iii) of Fig. 4.26). With
decreasing cohesion of the matrix, the displacements of the tunnel profile increase
considerably (see Fig. 4.28). Furthermore, the largest displacements no longer occur at
about 8 = 45° — @s/2, but near the crown.
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Figure 4.28. Magnitude of the displacement vector along the tunnel boundary (l.h.s.) as
well as extent of the plastic zone (r.h.s.) for varying parameters (unsupported tunnel, a = 5
m, go = 10 MPa, E = 20 GPa, ¢m = 30°, ym = 10°, cs= 0.7 MPa, ¢s = 20°, v=0.3).

Figure 4.29 shows the displacements along the tunnel boundary as well as the extent of
the plastic zone for three cases: (i), when solely the matrix reaches failure, (ii), when solely
the schistosity reaches failure and, (i), when both the matrix and the schistosity reach
failure. (Of course, in reality, the cohesion of the schistosity is smaller than the one of the
rock mass.) If solely the matrix or the schistosity reaches failure, the maximum
displacements are smaller than 0.01 m, while for a failure of both, the displacements can
be by a factor 4 larger.

In conclusion, it is the combined effect of failure in the schistosity planes and failure in the
matrix which leads to very large deformations of the tunnel profile.
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Figure 4.29. Magnitude of the displacement vector along the tunnel boundary (l.h.s.) as
well as extent of the plastic zone (r.h.s.) for varying parameters (unsupported tunnel, a = 5
m, 0o = 10 MPa, E = 20 GPa, ¢m = 30°, ym = 10°, @s = 20°, s = 20°, v=0.3).

Development of nomograms

The estimation of the displacements when tunnelling parallel to schistosity planes (see
Section 4.4.3) shall be facilitated by dimensionless nomograms. The displacements at a
specific location (i.e., at a specific angle ) of the tunnel boundary generally depend on all
the parameters of the problem under consideration:

u= f(E,v,gom,adym,l//m,(ps,adys,t//s,ao,aa,a) , (4.37)
where
2.¢c -coso, 2.¢c.-cosg
Oys =—7—— and o, =——"—". (4.38)
(1-sing,) (1-sing,,)
Eul(oya) [ OgmlTo=0485 y,=10°
04409 =01 @ =20°
0.01 1 0,/0,=0 P, =5°
v=03 0, = variable
0.008 M ¢, =30° E0= variable
Y g %&
0.006 %5%
0.004 S0 n AOWEE S
0.002
0 : ; —>
0 30 60 90 B[]

Figure 4.30. Magnitude of the displacement vector E-u/(0o.a) along the unsupported tunnel
boundary for various values of go and E.

The number of parameters can be reduced by performing a dimensional analysis and by
taking into account the findings of Chapter 4.2, considering that the schistosity represents
from the mechanical point of view a special case of a stratified rock mass:

-a O O
u =20 .f[ﬂ’ﬁ,&,v,(pm,,/,m,(ps’y,sj_ (4.39)
E o, O, O,

This theoretical hypothesis was investigated for the problem under consideration by
performing a series of numerical calculations. Figure 4.30 shows the considered parameter
sets and the normalised magnitude of the displacement vector E-u/(go.a) along the tunnel
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boundary. The results were obtained for different parameter sets but fall on one single
curve.

As the displacements of the tunnel profile are very non-uniform, only the maximum (Umax),
the minimum (umin) as well as the averaged (uaverage) displacement at the tunnel boundary
will be shown in the nomograms; these values are essential for design purposes.

In order to cover a wide range of parameters, but also to limit the computational effort, the
numerical calculations (cf. Section 4.4.3) were only carried out for specific parameter sets
(according to Table 4.3). The friction angles of the matrix ¢m were chosen to be larger than
those of the schistosity @s. The support pressure was chosen such as to cover the
practically important portion of the ground response curve (at ga71 =0, 0a2=0.100 and
0a3 = 0.200). Moreover, it can be assumed that the dilatancy angle of the matrix wm is
interconnected with its friction angle @m [68]. The dilatancy angle of the schistosity is usually
not constant during the shearing process, but decreases gradually until it approaches zero
for large shear displacements [107]. In order to be on the safe side (see upper diagrams of
Fig. 4.28), a rather high threshold value of 5° will be chosen.

For the sake of simplicity and considering that the effect of Poisson’s ratio is subordinate,
the Poisson’s ratio was kept fixed to 0.3.

Table 4.3. Overview of the considered parameter ranges for the nomograms.

04,500 [-] 0.05;0.1; 0.2; 0.3, =
v 0.3
om[°] 20; 25; 30
®s [°] 10; 15; 20

1 for om = 20°
s 150f?c:r(€:m==235(;"

(according to [68])

ws [°] 5°
04/00 [-] 0;0.1; 0.2

Bearing in mind that some of the parameters have been fixed, the maximum, minimum and
averaged displacement along the tunnel boundary depend on the following parameters:

u. -E Uny -E , Uaverage " E f(o-d,m T ,&,%,%j _ (4.40)

o,-a o0,-a o, -a o, 0, O,
This equation is represented in form of nomograms in Appendix Il. Each figure of Appendix
Il applies to a certain value of ¢s, m and 0a/00, while each diagram applies to a different
value of o4s/0o (Where o04s can be obtained with Eq. 4.38). Each curve shows the
normalised maximum Emaxu/(0o.a), minimum Eminu/(0oa) or averaged displacement
Eaverage' U/(00.@) in function of the normalised strength ouw/co. Consequently, one can
determine easily the maximum, minimum and averaged displacements for an unsupported
as well as for a supported, cylindrical tunnel for given initial stress and mechanical
parameters.

Furthermore, the nomograms allow assessing the influence of schistosity on the squeezing
deformations easily, by comparing the displacements for the schistous rock mass (with the
given rock parameters) with those in the absence of the schistosity planes (given by the
lines for gq,s/00 = « in the nomograms).

For the considered combinations of minimum uniaxial compressive strength and friction
angle of the schistosity, it may happen in some cases that the schistosity cohesion is higher
than the matrix cohesion. Nevertheless, for all the parameters of the nomograms, failure
occurs first in the planes of weakness and not in the matrix (cf. Egs. 4.34 and 4.35).
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The displacements for other values than those considered in the nomograms can be
estimated by interpolating between the respective curves of the nomograms. Generally,
the error due to the interpolation is less than 20%. For example, the displacements for a
friction angle @m of the matrix of 22.5° (and thus of a dilatancy angle ym of 3°) can be
estimated by interpolating between the nomograms of ¢m = 20° and 25°. (Of course, the
estimated displacements for dilatancy angles smaller than 3° would be on the safe side.)

Parameters of an equivalent isotropic material

Analogously to Section 4.2.5, the range of the (non-uniformly distributed) displacements of
a schistous rock mass can be estimated by considering an isotropic elasto-plastic material
with appropriately selected mechanical parameters. As the schistosity represents, from the
mechanical point of view, a special case of the stratified rock mass, the parameters of the
isotropic elasto-plastic model can be determined using the same procedure as in Section
4.2.5, the only difference being that the elasticity parameters of the equivalent material are
equal to the actual ones and that the plasticity parameters are obtained (based upon the
maximum or the minimum displacements of the anisotropic model) using the diagrams of
Appendix Il.

The goal of this section is to show, how equivalent parameters for an isotropic
homogeneous rock mass can be determined for the case of a tunnel drive parallel to the
layers, using the nomograms of Appendix Il (introduced in Section 4.4.4). With these
equivalent parameters, the assessment of the rock mass response to tunnelling can be
facilitated, as the calculation methods commonly used in tunnelling can be applied for
tunnels through schistous rocks, whose schistosity planes lie parallel to the tunnel axis. As
the schistosity represents, from the mechanical point of view, a special case of the stratified
rock mass, the same procedure as was already outlined in Section 4.2.5 can be used for
determining the equivalent parameters for an isotropic homogeneous rock mass, by
requesting that the maximum uUmax Or minimum umin displacements of the exact model
(obtained with the nomograms) are equal to those of the equivalent isotropic model for
three selected values of the support pressure (Ga1, Ga2, 0a3).

Figure 4.31a compares the GRCs of the anisotropic model (obtained for the parameters in
the first two rows of Table 4.4) with the GRCs obtained considering the two parameter sets
of the equivalent isotropic material after Table 4.4 (last two rows). The equivalent isotropic
material reproduces well the displacement range of the schistous material. Solely, the
middle sections of the GRC cannot be fitted properly, no matter how well chosen the
equivalent parameters are.

Table 4.4. Rock parameters.

E v c 7] 77}

[GPa] [-] [MPa] [] []

Matrix 20 0.3 1.155 30 10

Schistosity - - 0.419 10 5
Equivalent isotropic material

based upon Umax 20 0.3 0.518 20.0 1.0

based upon Umin 20 0.3 0.449 30.0 1.0

The usefulness of the proposed equivalent isotropic model will be illustrated by means of
two further tunnelling problems assuming the parameters of Table 4.4 (considering an initial
hydrostatic stress field of 10 MPa): (1) The longitudinal displacement profile of an
unsupported tunnel (Fig. 4.31b); (2) The boundary displacements of an unsupported tunnel
with a horseshoe profile assuming plane strain conditions (Fig. 4.31c). These problems
were solved numerically, using the exact schistous material model and the equivalent
isotropic model. (Numerical details for problem 1 can be found in Section 5.1.)
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According to Figure 4.31, the results obtained with the equivalent isotropic model (fitted
with the minimum and the maximum GRC) bound the exact solution. However, the pre-
deformations obtained with equivalent isotropic model are larger than the exact ones. This
is such because the middle section of the GRCs of the exact model does not fit perfectly
with those obtained with equivalent parameters. However, the rock response to tunnelling
obtained with equivalent parameters is accurate enough for practical purposes at least at
the preliminary design stage.
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Figure 4.31. (a) Maximum and minimum displacement at the tunnel boundary of a
cylindrical tunnel as a function of the support pressure (GRC). (b) Maximum and minimum
longitudinal displacement profile of an unsupported tunnel. (c) Maximum and minimum
magnitude of the displacement vector along the unsupported tunnel boundary of a
horseshoe profile, obtained with the exact model and with the equivalent isotropic model
(parameters after Table 4.4).

Conclusions

This chapter investigated the response of schistous rock to tunnel excavation parallel to
schistosity, considering a homogeneous rock mass with strength anisotropy.

In order to facilitate the assessment of squeezing in schistous rocks, dimensionless
diagrams were worked out based upon the results of a parametric study. These diagrams
serve to determine the parameters of an isotropic elasto-plastic model, which can be used
for estimating an upper and a lower bound of the non-uniformly distributed deformations of
the schistous rock.
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Influence of the orientation of the anisotropy planes on the
squeezing deformations

Introduction

The orientation of planes of anisotropy, particularly of the bedding and schistosity planes,
influences considerably the magnitude and distribution of the squeezing deformations ([9],
[25], [45]). Particularly adverse are planes of anisotropy that strike parallel or with a small
angle (less than 25°) to the tunnel axis (cf. [108]). This was observed also in the case
histories of Chapter 2.

In this chapter also the convergences are investigated, which are the displacements far
behind the face minus the displacements that occur ahead of the face (hereafter referred
to as “pre-deformation”). A review of pre-deformation estimation methods for homogeneous
and isotropic materials can be found in Cantieni and Anagnostou [109]. There are only a
few investigations concerning the pre-deformations in layered or schistous rocks.
Carranza-Torres and Fairhurst [110] investigated the application of the convergence-
confinement method for rock masses that satisfy the Hoek-Brown failure criterion.
However, the failure of the planes of weakness was not considered explicitly. Tonon and
Amadei [111] investigated numerically the effect of elastic anisotropy on the pre-
deformations. They found out that the existing expressions (valid for isotropic rock masses
under a uniform state of stress) are applicable only if the plane of transverse isotropy strikes
parallel to the tunnel axis; otherwise three-dimensional analyses are necessary. Klopci¢
and Logar [112] and Madkour [113] showed that a large portion of displacements occurs
ahead of the tunnel face especially when tunnelling with the dip, but did not consider failure
of the rock matrix. Schubert and Mendez [114] also investigated the influence of the
orientation of the schistosity on the tunnel behaviour using the example of the Galgenberg
Tunnel. In the current state of research a systematic, quantitative investigation of the
influence of the orientation of the planes of anisotropy on the convergences and easy-to-
use, design-oriented methods of analysis are missing. This chapter shows that the tunnel
convergences can be determined approximately based upon the solutions developed for
the borderline cases of tunnelling parallel or perpendicularly to the anisotropy planes
(Chapters 3 and 4) and the “schistosity influence factor” introduced in Section 2.1, which
expresses the combined effect of the dip angle ws and of the angle 6s between the strike
direction of the planes of anisotropy and the tunnel axis.

The plane strain assumption is only valid, if the planes of anisotropy are parallel or
perpendicular to the tunnel axis (cf. [115]): Plane strain calculations presuppose that (cf.
[115], [116]) the normal strain ¢, as well as the shear strains y,. and yx: are equal zero,
i.e., that one principal stress direction coincides with the tunnel axis. For a stratified or
schistous rock mass with anisotropy planes, which are neither parallel nor perpendicular to
the tunnel axis, the axial strain €, far behind the tunnel face equals zero, which is however
not true for the shear strains yyz and yx.. According to Zienkiewicz et al. [116], the
displacements in a cross-section far behind the tunnel face could be obtained by a so-
called "complete plane strain analysis" (see, e.g., [115], [117], [116]). In the present case,
however, full 3D analyses are indispensable because the pre-deformations also have to be
determined.

In order to determine the convergences, the ground response to tunnel excavation is
analysed by 3D numerical calculations (using Abaqus; [64]), which consider the advancing
tunnel face. An unsupported tunnel is considered and the excavation is simulated through
a stepwise reduction of the tractions along the entire boundary and at the face from ago to
zero (Fig. 5.1); a step-by-step simulation of tunnel advance is unnecessary for an
unsupported tunnel.
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Figure 5.1. Problem layout with boundary conditions for the strike direction of the planes
of anisotropy perpendicular to the tunnel axis.

Figure 5.1 shows the assumed boundary conditions. As the displacements and the shear
stresses 1,z and 1xz at the left vertical boundary are fixed to zero (and this contradicts the
actual behaviour, if the anisotropy planes are not parallel or perpendicular to the tunnel
axis), boundary effects appear (see Fig. 5.2; cf. [116]). In order to eliminate the effect of
the boundary condition, a sufficient long model is considered (50 times the tunnel radius).

The rock mass is taken as a homogeneous transversely isotropic material with the
constitutive model after Section 4.2 (thinly stratified rock) or 4.4 (schistous rock). If the
strike direction of the planes of anisotropy is perpendicular to the tunnel axis (as in Sections
5.1.2 and 5.1.3), only half of the system needs to be considered (Fig. 5.1). Otherwise (as
in Section 5.1.4), symmetry is lost and the whole system has to be considered.
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Figure 5.2. Normalised magnitude of the displacement vector u/um 2o at the crown along a
tunnel through schistous rock (a = 5m, oo = 10 MPa, E = 1 GPa, cm= 6 MPa, ¢m = 30°, ym
=10° ¢s= 0.8 MPa, ¢s = 10°, ys = 5°, v =0.3).

Tunnelling in schistous rock, perpendicular to the strike direction

In this section, the influence of the dip angle ws (see inset of Fig. 5.4) on the displacements
(Section 5.1.2.1), on the pre-deformations (Section 5.1.2.2) and on the convergences
(Section 5.1.2.3) will be shown. The analyses were performed by considering a friction
angle and cohesion of the schistosity, which are considerably smaller than those of the
matrix. Two different values of the cohesion of the surrounding matrix cm will be analysed:
A rather small cohesion of cm =1 MPa (where the matrix yields) and a larger value of
cm = 6 MPa, where the matrix remains elastic. The latter was chosen, in order to investigate
if the statements of this section are valid also for less severe squeezing conditions, where
yielding occurs only along the schistosity plane.
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Figure 5.3. (a) Normalised displacement u/um 2o along the tunnel; (b) extent of the plastic
zone; and, (c), normalised longitudinal displacement (uzum2p) and normalised cross-
sectional displacement (us/um,2p) along the tunnel (a=5m, oo = 10 MPa, E =1 GPa, cm=6
MPa, m = 30°, wym = 10°, cs= 0.8 MPa, ¢s = 10°, s = 5°, v=0.3).

51.21 Influence of the dip angle on the displacements

The Figure 5.3 shows, for a dip angle ws of 0°, 45° or 90°, (a), the longitudinal distribution
of the magnitude of the displacement vector (hereafter referred as “the displacement”) at
the crown, at the invert and at the side wall. The displacements are normalised by the
displacement um_2p, which would occur in the absence of schistosity (um2p can be
determined analytically); (b) the plastic zone in the vertical symmetry plane of the tunnel;
and, (c), the longitudinal distribution of the magnitude of the longitudinal component of the
displacement vector as well as the magnitude of the projection of the displacement vector
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in the plane of the tunnel cross-section (at the tunnel crown and invert; normalised by the
displacement um,2p).

For ws = 90°, schistosity is irrelevant for the displacements far behind the face, because
failure in the schistosity plane cannot occur there. With decreasing dip angle the
displacements increase and the profile deforms non-uniformly.

In the following, the maximum and minimum displacements of the profile will be considered
rather than the displacements at specific points of the profile. (Note that the maximum
displacements do not occur at the profile locations considered in Figure 5.3a and therefore
the results of Figure 5.3a cannot be compared with those of the next figures.)

cm =1 MPa, ¢ =400 kPa ¢y, =6 MPa, ¢g = 800 kPa

Ui o 1 o Uiy, o [

3 m
24

4
1= Unin

‘ ‘ ‘ —> ‘ ‘ —>
0 30 60 90 W[l 0 30 60 90 w1l

5

Figure 5.4. Normalised maximum and minimum displacements as a function of the dip
angle ws (a=5m, oo=10 MPa, E =1 GPa, ¢m = 30°, ym = 10°, s = 10°, ws = 5°, v = 0.3).
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Figure 5.5. Effect of matrix and schistosity cohesion: Normalised maximum displacements
as a function of the dip angle ws (a = 5 m, o = 10 MPa, E = 1 GPa, ¢m = 30°, ym = 10°,
@s =10° ws=5° v=0.3).

Figures 5.4 and 5.5 show the normalised maximum and minimum displacements as a
function of the dip angle for a matrix cohesion of 1 or 6 MPa and a schistosity cohesion of
400 or 800 kPa. The following conclusions can be drawn:

— The dip angle has a remarkable influence both on the maximum and on the minimum
displacement (Fig. 5.4);

— The non-uniformity of the displacements in the tunnel profile is maximum at ws = 0° and
decreases monotonously with increasing dip angle (Fig. 5.4);

— Schistosity does not play a role for the maximum and minimum displacements
(u = um,20) if the dip angle is greater than ca. 70°;

— The displacements in tunnelling parallel to schistosity plane can be considerably larger
than in tunnelling perpendicular to the schistosity plane;

— The lower the schistosity cohesion, the bigger the effect of the dip angle will be (Fig.
5.5; l.h.s. diagram).
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— It is the combination of a low schistosity cohesion with a low matrix cohesion which
produces very large displacements: A by 50% lower cohesion in the schistosity planes
results only in slightly larger displacements if the matrix is strong (cm = 6 MPa; r.h.s.
diagram of Fig. 5.5), but to twice as big displacements if the matrix is weak (cm = 1 MPa;
I.h.s. diagram of Fig. 5.5).

According to Figure 5.5, the maximum displacement can be approximated as a linear (or
better bilinear) function of the dip angle. The linear function can be defined in terms of the
schistosity influence factor S (Section 2.1), which combines the dip angle ws and the angle
6s between the strike direction and the tunnel axis:

umax = (umax,/l_ui) S+ UL ’ (51)
where
w, 6
=1-—=2 <[0,1], 5.2

(6s=90° in the present case) and umaxn and ut are the displacements in tunnelling parallel
and perpendicular to the schistosity planes, respectively. umax can be determined after
Section 4.4, while utis equal to um2p, which can be determined analytically.

The linear approximation (Eq. 5.1 with S after Eq. 5.2) is satisfactory for small dip angles,
but overestimates the maximum displacement for steep schistosity planes, which — as
mentioned before — do not play a role. The latter suggests a bilinear relationship, using an
improved schistosity influence factor,

o, 12
P a— -0 0,1], 5.3
90_¢590_¢s jE[ ] ( )

S=max[1—

which takes into account that failure is not possible for dip angles larger than 90° — ¢s. The
S versus (ws, 6s) plot is given in Figure 5.6.

P
1
1
1
]
0

Figure 5.6. Improved schistosity influence factor S as a function of the schistosity dip angle
ws and the angle Os between the strike direction of the schistosity and the tunnel axis

((Ps = 100).

The accuracy of the improved schistosity influence factor for arbitrary strike directions will
be demonstrated in Section 5.1.4.

The minimum displacements can be expressed analogously (see Fig. 5.4):

Upip = (Upy =0, )- S+, . (5.4)

min

The relationships of this section provide a simple estimation of the displacements for
different dip angles, which are satisfactory enough for practical purposes.
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In Section 2.3, the so-called “schistosity angle” 8 (defined as the angle between the normal
vector of the schistosity plane and the radial direction of the tunnel) was considered as a
possible measure of the influence of the schistosity orientation on the displacement at a
specific location of the tunnel profile. The underlying idea was that the largest
displacements along the tunnel boundary occur at locations where the schistosity is almost
parallel to the excavation boundary, while the smallest displacement occur at locations
where the schistosity is almost perpendicular to the excavation boundary (provided that
both, the schistosity and the matrix reach failure; see, e.g., [25], [45]). However, no clear
correlation could be found in Section 2.3 between the displacements and the schistosity
angle. This can be explained by means of numerical calculations. Figure 5.7 shows the
displacements at the tunnel boundary as a function of the schistosity angle 8 and of the dip
angle ws. The displacements decrease with increasing schistosity angle, but only if the dip
angle is fixed. The schistosity angle allows to estimate only the location of the tunnel
boundary with the maximum displacement.

Uf”m.zn [ y

e wz=45°

0

0 30 60 90 Bl

Figure 5.7. Normalised magnitude of the displacement vector u/um2p as a function of the
schistosity angle B for various dip angles ws (a =5 m, oo =10 MPa, E = 1 GPa, cm= 1 MPa,
Pm = 300, WYm = 100, cs=04 MPa, Ps = 100, Ws = 50, V= 03)

5.1.2.2 Influence of the dip angle on the pre-deformations

The numbers besides the z = 0 line in Figure 5.3a give the normalised displacement at the
face, i.e. the pre-deformation. The latter is considerably bigger for a dip angle ws of 45°
than for ws = 0° or 90° or for an isotropic material (0.27-um,2p in the example of Fig. 5.3).
The existing pre-deformation estimation methods, which were developed for isotropic
materials, underestimate the pre-deformation (and, consequently, overestimate the
convergence) for schistous rocks with medium dip angles, but seem to be adequate for
very steep or sub-horizontal schistosity planes.

The large pre-deformations occurring in the case of ws = 45° are caused by failure in the
schistosity plane in an extended zone in the ground ahead of the face (over the entire face;
Fig. 5.3b). The failure in the schistosity planes results also in bigger longitudinal
displacements (Fig. 5.3c). For a tunnel drive perpendicular or parallel to the tunnel axis,
the pre-deformations at the crown and the invert are the same (cf. Fig. 5.3) and lie almost
in the cross-sectional plane of the tunnel. For ws=45°, however, the longitudinal
deformations are considerable at the face and along the entire tunnel; furthermore, the pre-
deformations are considerably larger in the invert than in the crown (Fig. 5.3c), because
the plastic zone ahead of the face is not symmetric with respect to tunnel axis (Fig. 5.3b).
Klop¢i¢ and Logar [112] obtained similar results and therefore concluded that tunnel
advance with the dip is advantageous because in this case the major part of the
displacements occurs ahead of the face and, consequently, the convergences are smaller.
This conclusion is correct concerning the crown displacement, but disregards that the
convergence at the invert, which under squeezing conditions is equally important, will be
considerably bigger.
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Figure 5.8 presents additional computational results, for other values of the schistosity- and
matrix-cohesion. The diagrams show the maximum of the “pre-deformation fraction” over
the profile circumference as a function of the dip angle. (The “pre-deformation fraction” is
defined as u/u(0), where u is the displacement magnitude at a profile point far behind the
face and u(0) denotes the displacement magnitude of the same profile point at the face.)
The highest pre-deformation fractions occur at dip angles between 20° and 70°,
irrespective of the cohesion of the schistosity and of the matrix.

¢y = 1 MPa, ¢ = 400, 800 kPa Gm = 6 MPa, ¢ = 400, 800 kPa
(U(0)YU) iy [ (U(O)YU) [

1] 1]
0.8 0.8 cs = 400 kPa
06 4 c, =400 kPa 06

800 kPa
0.4 0.4
800 kPa

0.2 029

0 ; : > 0 ‘ : >

0 30 60 90 w,[°] 0 30 60 90 w7l

Figure 5.8. Maximum pre-deformation fraction as a function of the dip angle ws (a =5 m,
0o =10 MPa, E = 1 GPa, ¢m = 30°, ym = 10°, ¢s = 10°, ws = 5°, v=10.3).

5.1.2.3 Influence of the dip angle on the convergences

Figure 5.9 shows the maximum and minimum convergence as a function of the dip angle.
One can recognise that:

— The dip angle influences considerably both the maximum and the minimum
convergence;

— Schistosity does not play a role if the schistosity planes are steeper than about 70°;

— The dip angle influences the convergences more than the displacements (for
¢m =1 MPa and ¢s = 0.4 MPa, the maximum convergences for ws = 0° are by a factor
of 6.5 higher than those for ws = 90°, while the maximum displacements for ws = 0° are
by a factor of 5 higher than those for ws = 90°, see Fig. 5.4).

The relationship between the minimum or maximum convergence and dip angle can be
approximated analogously to Section 5.1.2.1, i.e. by a linear or bilinear function (see Fig.
5.10):

Ay = (A — A1, )- S+ Au, (5.5)

Ay = (A — AU, )-S+ Au, (5.6)

min, Il
where S denotes the schistosity influence factor after Eq. (5.2) or (5.3); Aumaxn and Aumin,i
denote the maximum and minimum convergence, respectively, when tunnelling parallel to
the schistosity planes and can be determined as usual for isotropic elasto-plastic materials
(see [109]) with the parameters of the equivalent isotropic material after Section 4.4; and
Aus is the convergence when tunnelling perpendicular to the schistosity planes and can be
determined as usual for isotropic elasto-plastic materials with the parameters of the matrix.
(Aurwill be slightly overestimated, because the pre-deformations occurring in the absence
of the schistosity are slightly smaller than those occurring in schistous rocks.)
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Figure 5.9. Normalised maximum and minimum convergences as a function of the dip
angle ws (a =5m, oo =10 MPa, E =1 GPa, ¢m = 30°, ym = 10°, s = 10°, ws =5°, v =0.3).
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Figure 5.10. Effect of matrix and schistosity cohesion: Normalised maximum convergences
as a function of the dip angle ws (a = 5 m, oo =10 MPa, E = 1 GPa, ¢m = 30°, ym = 10°,
@s =10° ws =5° v=20.3).

Tunnelling in thinly stratified rock, perpendicular to the strike direction

This section discusses differences and similarities between schistous and stratified rocks
with respect to the influence of the dip angle.

5.1.3.1 Influence of the dip angle on the displacements

Figure 5.11 shows the displacement (the maximum one along the tunnel boundary in a
cross-section far behind the tunnel face; normalised by the displacement that would occur
in the absence of hard interlayers) as a function of the dip angle. As in the case of a
schistous rock (Section 5.1.2), the dip angle has a remarkable influence on the
displacements.

The dashed lines in Figure 5.11 represent the linear interpolation (Egs. 5.1 and 5.2)
between the displacements u+ and umax,i occurring in the borderline cases of horizontal and
vertical bedding, whereby uL can be determined analytically after Section 3.2, while Umax.
can be estimated using the dimensionless diagrams introduced in Section 4.2.

Contrarily to a schistous rock mass, the bilinear approximation (S after Eq. 5.3) is not
meaningful; due to the direction-dependent stiffness of the stratified rock mass, the
displacements for dip angles larger than about 90° — ¢w = 65° are not constant.

The linear approximation underestimates the displacements considerably for the low initial

stress 0o of 0.75 MPa (for which both the weak and the hard layers remain elastic) but
provides satisfactory results for the practically relevant case of a high initial stress
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(00 = 10 MPa in the example of Fig. 5.11). Therefore, in the next sections, only the case of
0o = 10 MPa will be analysed.

0y =0.75 MPa agp =10 MPa
umax/uw‘zp [-]A umax/uw‘m [ N
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Figure 5.11. Normalised maximum displacement as a function of the dip angle ws (a = 5 m,
En =10 GPa, ch =5 MPa, Ew= 0.5 GPa, cw= 0.5 MPa, va = vw = 0.3, ¢n = @w = 25°, wn =
ww=15°).

5.1.3.2 Influence of the dip angle on the pre-deformations

As for a schistous rock, the pre-deformation in the invert is large for ws = 45° (Fig. 5.12a).
(For comparison, the pre-deformation for a tunnel drive in only hard rocks would amount to
0.016-uw,2p and those in only weak rocks to 0.25uw,2p.) However, contrary to schistous
rocks, considerable pre-deformation fractions occur also for a dip angle of 90°.

The large pre-deformations in tunnelling perpendicular to the layers are associated with the
large longitudinal deformations (Fig. 5.12b), which occur due to the considerably lower
stiffness perpendicular to the layers: As the ground deforms more ahead of the tunnel face,
the rock behind the face experiences a longitudinal displacement towards the excavated
part of the tunnel. The opposite happens in a tunnel drive parallel to the layers: As the
ground deforms more behind the tunnel face, it experiences a longitudinal displacement
towards the tunnel face.

As for schistous rocks, large longitudinal deformations ahead of the face take also place
for a dip angle of ws of 45° (Fig. 5.12b); they are considerably larger in the invert than in
the crown. This aspect is more pronounced than for the schistous rock mass and was
already observed by Tonon and Amadei [111]: A transversely isotropic rock mass is stiffer
in direction parallel to the layers and more deformable in direction normal to them. When
excavating against dip, the rock mass at the invert is more deformable towards the
excavated part of the tunnel. On the contrary, the rock mass at the crown is more
deformable towards the non-excavated part of the tunnel, leading thus to smaller pre-
deformations at the crown (cf. [111]).
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Figure 5.12. (a) Normalised displacement u/uw2p along the tunnel; and, (b), normalised
longitudinal displacement (uz/uw,2p) and normalised cross-sectional displacement (uc/uw,zp)
along the tunnel (a = 5m, oo = 10 MPa, xnw/xw = 1, En = 10 GPa; ch = 5 MPa, Ew= 0.5 GPa,
cw=0.5 MPa, vh =vw = 0.3, @n = @w = 25°, wh = Yw = 5°).

Therefore, according to Tonon and Amadei [111], larger tunnel convergences develop
when tunnelling with dip (as when tunnelling against dip), as the pre-deformations occurring
ahead of the tunnel are larger (while the total displacements are the same). Figure 5.13,
however, shows that the tunnel convergences when tunnelling with or against dip are
exactly the same, but do not develop at the same location in the tunnel (i.e., mirroring the
tunnel problem). Tonon and Amadei [111] only considered the pre-deformations in the
crown and did not take into account that the pre-deformations in the invert (when advancing
in dip direction) are considerably smaller. Of course, the excavation direction can be
important in tunnelling — as for example tunnelling against dip is more critical in respect to
the stability of the tunnel face (due to loosening) — but not in respect to squeezing.
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Figure 5.13. Normalised magnitude of the displacement vector u/uw,2p along the tunnel for
a dip angle ws of 45° (a = 5 m, oo = 10 MPa, xn/xw =1, En = 10 GPa; cn = 5 MPa, E»= 0.5
GPa, cw= 0.5 MPa, vh = vw = 0.3, @n = @ow = 25°, wn = ww = 5°).

According to Figure 5.14, which shows the pre-deformation fraction as a function of the dip
angle, the pre-deformation fraction reaches considerable values for dip angles between
20° and 70°. However in contrast to schistous rocks, for dip angles of about 90°, the pre-
deformation fraction can also be large, because large longitudinal deformations occur
ahead of the face due to the stiffness difference parallel and perpendicular to the layers.
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Figure 5.14. Maximum pre-deformation fraction as a function of the dip angle ws (a = 5 m,
00 =10 MPa, En = 10 GPa, ch = 5 MPa, Ew= 0.5 GPa, cw= 0.5 MPa, vi = vw = 0.3, ¢n = Qw
=25°% wh = yw=15°.

5.1.3.3 Influence of the dip angle on the convergences

The linear approximation (Eq. 5.5) can also be applied for stratified rocks, whereby Aur
and Aumax,n can be determined as usual for isotropic elasto-plastic materials (see [109])
with the parameters of an equivalent isotropic material after Section 3.3 and 4.2,
respectively. The linear approximation is satisfactory for stratified rocks (Fig. 5.15),
although not so good as for schistous rocks.
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Figure 5.15. Normalised maximum tunnel convergences as a function of the dip angle ws
(@a=5m, 00=10 MPa, En =10 GPa; ch =5 MPa, Ew= 0.5 GPa, cw= 0.5 MPa, va = vw = 0.3,
®n=@w=25° wh = ww=5°).

5.1.4 Arbitrary strike

The linear or bilinear approximations of Section 5.1.2 (Egs. 5.1 to 5.6) are sufficiently
accurate also for arbitrary dip angles ws and strike directions 6s. This will be shown by the
computational results of a parametric study considering schistous rock. (The behaviour of
thinly stratified rocks is mostly the same in this respect; see Section 5.1.3.)

cs = 800 kPa, ¢, = 6000 kPa
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Figure 5.16. Maximum and minimum displacements and convergences as a function of
the dip angle ws and the angle 6s between the schistosity strike direction and tunnel axis
(@a=5m, 00=10 MPa, E =1 GPa, cm= 6 MPa, ¢m = 30°, ym = 10°, cs= 0.8 MPa, ¢s = 10°,
ws=5°%v=03).
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Figures 5.16 and 5.17 show the numerically obtained displacement versus (ws, 6s) and the
convergence versus (ws, 0s) diagrams for less and more severe squeezing conditions,
respectively. (In the first case, yielding occurs only in the schistosity plane.)

The diagrams of Figures 5.16 and 5.17 are very similar to the S versus (ws, 6s) diagram of
Section 2.1 and, particularly, to the one of Figure 5.6 (improved schistosity influence factor
S), supporting thus the conclusion that the linear and, particularly, the bilinear
approximation introduced in Section 5.1.2 are sufficiently accurate for practical purposes
for any strike direction to the tunnel axis.
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Figure 5.17. Maximum and minimum displacements and convergences as a function of
the dip angle ws and the angle 8s between the schistosity strike direction and tunnel axis
(@a=5m, 00=10MPa, E=1GPa, cm=1MPa, ¢m = 30°, ym = 10°, cs= 0.4 MPa, ¢s = 10°,
ws=5°%v=0.3).

Conclusions

This chapter investigated the influence of bedding and schistosity planes using spatial
calculation models with arbitrary orientation of the planes of anisotropy relative to the tunnel
axis and showed that the orientation of the planes of anisotropy to the tunnel has a
considerable influence on the convergences (considering the pre-deformation occurring
ahead of the tunnel face), when tunnelling through thinly stratified and schistous rock
masses.

Furthermore, this chapter could show that there are relevant differences to the well-known
case of an isotropic rock mass and that the numerical calculations reproduce well the
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empirically determined relationship between convergence and spatial orientation of the
schistosity considering the so-called “schistosity influence factor”, which combines the dip
ws and the strike direction 6s of the planes of anisotropy to the tunnel axis and was
developed based on the data from the Gotthard Base Tunnel (Section 2.1). This
relationship allows to estimate the displacement for an arbitrary orientation of the
anisotropy planes to the tunnel axis based upon the displacements for the borderline cases
of vertical or horizontal anisotropy planes, rendering thus spatial numerical analyses
unnecessary at least in the preliminary design stage.

Variability of squeezing deformations in folded rocks

Introduction

Section 5.1 showed that the orientation of bedding or schistosity plays a very important role
for the magnitude and distribution of the deformations in the cross-section of the tunnel.
Specifically, planes of anisotropy may affect rock behaviour adversely, particularly if their
strike direction forms a small angle with (or is parallel to the tunnel axis). The orientation of
bedding or schistosity may change frequently along a tunnel through folded rocks and result
in variable squeezing intensity.

o

Figure 5.18. Tunnelling through a folded structure with strike direction of the planes of
anisotropy perpendicular to the tunnel axis.

In this chapter, a folded rock mass is considered, whose strike direction is perpendicular to
the tunnel, while the dip angle changes along the alignment. A folded structure is
characterised by tunnel sections, where the schistosity planes lie parallel to the tunnel axis
and tunnel sections with larger dip angles (see Fig. 5.18). From Section 5.1, it is known
that the most adverse conditions occur, when the schistosity lies parallel to the tunnel axis
and the most favourable conditions occur, when the dip angle of the schistosity becomes
maximum. Due to the interaction between tunnel sections with more favourable anisotropy
plane orientations and tunnel sections with adverse anisotropy plane orientations, the
deformations may become more uniform along the tunnel, so that the squeezing variability
may even disappear completely. This can be the case in an extremely folded rock mass,
where the orientation of the anisotropy planes changes within few meters. The influence of
frequent orientation changes of the planes of anisotropy in folded rocks on the squeezing
behaviour has not been investigated so far.

Starting with the problem definition and the geometric modelling of a folded rock mass in
Section 5.2.2, it will be shown that even small variations of the orientation of the planes of
anisotropy may cause a significant variability of the intensity of the convergences, and this
both for schistous (Section 5.2.3) and for thinly stratified rock masses (Section 5.2.4).

Finally, in Section 5.2.5, the influence of the variation of the orientation of the planes of
anisotropy on the tunnel convergences will be shown by means of an application example
concerning the Sedrun section of the Gotthard Base Tunnel, where heavily squeezing
conditions were encountered during construction (Section 2.1), and the predictive capacity
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of the so-called “schistosity influence factor” S, which was already introduced in Section
2.1, will be discussed.

Problem definition

Due to buckling of the formation, a folding may develop that has a symmetric, periodic,
sinusoidal shape (cf., e.g., [118]). The geometry of the folding can be simplified as a
sinusoidal function in the z-direction (Fig. 5.19):

y = As[n[(Z_L#j, (57)

where L denotes half the period and A the amplitude of the folds.
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Figure 5.19. Problem layout with boundary conditions assuming that the strike direction of
the planes of anisotropy is perpendicular to the tunnel axis.

The dip angle ws varies then along the tunnel according to the equation:

arctan[A -%COS(MJJ €[0,90], (5.8)

CUS =

L

while the maximum dip angle of the folds reads as follows:

@ o = arctan(A %) . (5.9)

's,max

Folding is taken into account numerically on the level of the constitutive model, by
considering a position-dependent normal vector to the anisotropy surface:

n= 1 . (5.10)
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According to Equation (5.10), the geometry of the folded rock mass is defined solely by the
maximum dip angle wsmax (defined by Ar/L; Eq. 5.9) and the period 2L of the sinuisodal
folds.

(a) (b)

AAAAAAAAAAAAAA

Lo

Figure 5.20. (a) Undeformed formation, (b), folding due to shortening of the formation by
20%.
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Figure 5.21. Amplitude of the folding A/Lo according to Equation (5.11) as a function of
L/Lo.

Physically meaningful pairs of these two parameters could be chosen by considering an
initially unfolded formation of length Lo (Fig. 5.20a), which buckles under the action of
horizontal tectonic stresses and becomes compressed to a length L (Fig. 5.20b). The
corresponding amplitude of the folding (cf. Eq. 5.7) can be calculated with the requirement
that the arc length of the folding corresponds to the original length of the formation:

LO=JL.«/1+(y')2-dz:j\/1+(¥cos[%zjj2-dz, (5.11)

which can be solved with respect to A by using the elliptic integral of the function. The
results are represented in Figure 5.21. The more the formation is compressed, the larger
the amplitude and thus the maximum dip angle wsmax of the folding will be (Eq. 5.9).

The numerical model is presented in Figure 5.19 and is delimited by the symmetry planes
of the folding, having thus a length equal to half a period L (cf. Fig. 5.18). If the strike
direction of the planes of anisotropy is perpendicular to the tunnel axis (due to symmetry),
only half of the system has to be considered; otherwise the whole system has to be
considered (as in Section 5.2.5).

An unsupported tunnel will be considered and the excavation will be simulated through a
stepwise reduction of the tractions at the excavation boundary from oo to zero along the
entire tunnel (Fig. 5.19). The displacements, that are calculated in this way, include the
pre-deformations. Only the magnitude of the displacement vector will be considered
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(hereafter referred to as “displacement”). (The longitudinal displacement is small, which
means that the main component of the displacement vector is the cross-sectional one.) In
order to reduce the sensitivity of the results to the mesh discretisation, sufficiently fine
meshes were chosen (e.g., Fig. 5.22).

The rock structure is taken as a homogeneous, transversely isotropic material, which
accounts either for the presence of schistosity planes, or for the mechanical parameters
and thickness fractions of thinly alternating weak and hard layers. The constitutive models
were already presented and validated in the Sections 4.2 and 4.4, respectively. The
computations are carried out with Abaqus [64].

(@) (b)

Figure 5.22. (a) Numerical model for L = 25 m for the strike direction of the planes of
anisotropy perpendicular to the tunnel axis, (b), Detail of the numerical model.

Schistous rocks

According to Section 5.1, the largest displacements develop when yielding occurs both in
the schistosity planes and in the matrix. Therefore, low cohesion values will be chosen both
for the matrix and the schistosity planes (see legend of Fig. 5.23).

The lLh.s. diagrams of Figure 5.23 show the longitudinal displacement distribution
(maximum, minimum and averaged values, normalised by the tunnel radius) for an
unfolded formation as well as for the folding resulting from a formation compression &r by
3.5%, 20% and 50%. The r.h.s. diagrams show the displacement distribution along the
circumference of the tunnel cross-section at the fold peak (z = 0; the most unfavourable
cross-section) as well as at the location of the maximum dip angle (z = L/2; the most
favourable cross-section). In the following, the magnitude and distribution of the
displacements will be discussed, considering the ratio of the maximum displacements at
the two aforementioned cross-sections (at z=0 and L/2) as a measure of the squeezing
variability. (The minimum and averaged displacements remain nearly constant along the
tunnel.) Studying the computational results of Figure 5.23 from top to down, one can readily
recognise the effect of an increasing tectonic compression & and folding of the formation:

— The maximum dip angle wsmax increases and consequently (Section 5.1) the
displacements at z = L/2 decrease. For & = 50%, the anisotropy plane becomes so
steep at the cross-section z = L/2 (wsmax > 68°), that the schistosity does not play a role
anymore (cf. Section 5.1). The displacements at the cross-section z=L/2 are
approximately equal to the displacements that would occur if the dip angle were
constant (= ws max) along the tunnel. (This is, for example, recognisable for & = 20%, as
Umax/a for the constant wsmax amounts to ca. 0.1 and is the same as
Umax(z = L/2)/a = 0.1.) This means that the tunnel section with steep anisotropy planes
is not influenced by the nearby zones where the anisotropy planes are subhorizontal.
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Figure 5.23. Influence of formation compression. Maximum, minimum and averaged tunnel
displacements along the tunnel (l.h.s.) and displacements along the tunnel boundary at z
=Qandatz=L/2(r.h.s.;a=5m,c0= 10 MPa, E = 1 GPa, cm= 1 MPa, ¢m = 30°, ym = 10°,
cs=0.4 MPa, s = 10°, ys = 5°, v=0.3).
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— The displacements at the fold peak (z=0) decrease (by a factor of two for a
compression & of 50%); the adjacent tunnel sections with steep anisotropy planes have
a stabilising effect. Note that in the case of intensive folding (¢r = 50%), particularly large
displacements occur only very locally, in the very short tunnel sections with almost
horizontal schistosity planes. The tunnel sections with steep schistosity planes are much
more extended, which explains the observation made above that the displacements in
these tunnel sections are not affected by the fold peaks.

— The displacement distribution becomes more uniform along the circumference of the
tunnel cross-section (compare the r.h.s. diagrams for & = 0% with those for & = 50%).
In the case of intensive folding (&r= 50%), the displacements are non-uniformly
distributed along the circumference of the tunnel cross-section only in the close vicinity
of the fold peaks.

— The squeezing variability increases in the considered range of 0% < & < 50%. For
&= 50%, the maximum displacement at the fold peak is by a factor 2.5 higher than the
maximum displacement in the tunnel section with steep schistosity planes. It should be
noted that the squeezing variability is maximum at & = 50%. If the formation were more
intensively folded, then the displacements at z = L/2 would remain constant (schistosity
does not play a role for such big dip angles; cf. Section 5.1), but the displacements at
z =0 (and consequently the variability, too) would decrease (due to the stabilising
influence of the adjacent areas with steep schistosity planes). This will be shown later.

In the parametric study of Figure 5.23, the maximum dip angle wsmax and the fold period
are varied simultaneously. Next, the effect of these two parameters will be investigated
separately. In Figure 5.24, the fold period is kept constant and the influence of the
maximum dip angle wsmax (or, equivalently, the fold amplitude; see Eq. 5.9) is investigated.
The following conclusions can be drawn:

— The maximum displacements along the tunnel increase with decreasing wsmax. (The
influence of wsmax on the averaged and minimum displacements is small.)

— A decrease in wsmax from 87.7° to 68° results in a larger squeezing variability along the
tunnel (the ratio of the maximum displacements at the cross-sections z=0and z=L/2
increases from 1.8 to 2.6). This is because the displacements at z = L/2 remain constant
(schistosity does not play a role, if the schistosity planes are so steep; cf. Section 5.1),
but the maximum displacements at the fold peak (z = 0) decrease due to the stabilising
influence of the adjacent areas with steeply inclined schistosity planes.

— Afurther decrease in wsmax from 68° to 51° leads to a smaller squeezing variability along
the tunnel (the aforementioned ratio decreases from ca. 2.6 to 1.7), but to a bigger non-
uniformity of the displacements in the tunnel profile, and this over the entire tunnel.
(Note that, therefore, squeezing variability is maximum at wsmax = 68°.)

— The displacements in the long tunnel section with steep schistosity planes are not
influenced by the adjacent tunnel sections with subhorizontal schistosity planes; they
are almost equal to those that would occur if the dip angle were constant (= wsmax). As
will be shown later, this is such due to the assumed, rather large, fold period (of L/a = 5).

Next, the influence of the fold period is investigated, keeping the maximum dip angle ws max
equal to almost 90° (Fig. 5.25). The following conclusions can be drawn:

— The displacements at the fold peaks increase with increasing fold period. The reason is
that the tunnel sections with subhorizontal schistosity planes become longer. However,
large displacements occur only locally (around the fold peaks), as the tunnel sections
with steep schistosity planes become also very long.

— Squeezing variability along the tunnel also increases with increasing fold period, but is
remarkable also for a relatively small fold period. (For L/a=2.5, the maximum
deformations umax/a vary between 0.04 to 0.07).
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Figure 5.24. Influence of the maximum dip angle. Maximum, minimum and averaged
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In order to identify the conditions under which folding can be neglected in design, a
parametric study was performed. The maximum displacements umax/a of the cross-sections
at the fold peaks (z =0) and at the largest dip angle (z = L/2) generally depend on the
geometric parameters of the folding,

=f[é£j or f(a)smax,kj, (5.12)
5 L a " a

L
2

u

max
’

z=0 a

and on the mechanical parameters of the schistous rock mass (see Chapter 4.4).
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Figure 5.26. Influence of the period of the folding on the maximum tunnel displacements
(normalised by the tunnel radius a) atz=0and atz=L/2 (a=5m, oo = 10 MPa, E = 1 GPa,
cm=1MPa, om = 30°, ym = 10°, cs= 0.4 MPa, ¢s = 10°, ys = 5°, v =0.3).

Figure 5.26 presents the maximum displacements at z= 0 and z = L/2 as a function of the
fold period L/a for maximum dip angles of 20° to 87.7°. With increasing fold period, the
displacements at the fold peaks (z = 0) and at the locations with the steepest schistosity
planes (z = L/2) approach asymptotically the displacements that would occur if the
schistosity planes had a constant dip angle (of 0° or wsmax, respectively) along the entire
tunnel. This happens relatively quickly in the locations with steep schistosity planes (cross-
section z = L/2), but very slowly (at much bigger fold periods) in the fold peaks (cross-
section z = 0). The reason is that the tunnel sections with steeply inclined planes are much
longer than the peak zones. According to Figure 5.26, folding can be practically disregarded
(the displacements at the fold peaks are by maximum 20% lower than in the case of
uniformly horizontal schistosity planes), if the tunnel sections with subhorizontal schistosity
planes (dip angle < 10°) have a length of minimum 4 times the tunnel radius. This leads to
the following condition:

= (= 12.4 — 30 for wsmax = 20° — 40°). (5.13)

1- 2 arccos [ttan(m))]

z an(a)

s,max

L 4
a
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The maximum displacements at the fold peaks (z=0) decrease monotonously with
decreasing fold period, because the tunnel sections with subhorizontal schistosity planes
become shorter and the stabilising effect of the adjacent sections with steeply inclined
schistosity planes becomes more pronounced. The effect of the fold period on the
maximum displacements at z = L/2 is more complex (note the minima in the blue lines in
Fig. 5.26), because of two opposite effects: With decreasing fold period,

— onthe one hand, the adjacent tunnel sections with subhorizontal schistosity planes have
an increasingly unfavourable effect, which tentatively increases the deformations at
z=1/2;

— on the other hand, the vertical symmetry planes at z=0 and z =L (where the axial
displacements are equal zero) have an increasingly favourable effect (particularly for
small wsmax angles; cf. Section 5.1), which tentatively reduces the deformations at
z=1L/2.

For L/a of approximately 1, the maximum tunnel deformations are practically uniform along

the tunnel, but considerably smaller than the displacements that would occur in a tunnel

drive parallel to the schistosity. Therefore, it can be concluded, that even small scale folding
may have a considerable influence on the tunnel displacements.

Stratified rocks

This section investigates similarities and differences of schistous and thinly stratified rocks
with respect to the influence of folding. An extreme case is considered, for which the hard
layers are considerably stronger and harder than the weak layers (see parameter values
in the legend of Fig. 5.27). The thickness fractions of the layers are taken equal to 0.5. The
initial stress o amounts to 10 MPa or 0.75 MPa in order to check whether squeezing plays
arole. (Under an initial stress of 0.75 MPa, the rock mass behaves elastically.)

Figures 5.27 and 5.28 show the longitudinal distribution of the displacements (normalised
by the displacement that would occur in the absence of hard interlayers) for oo = 0.75 MPa
and 10 MPa, respectively, and various fold periods. One can recognise that:

— Folding results in considerable squeezing variability also in the case of thinly stratified
rocks.

— The maximum deformations increase with the length of the tunnel sections with sub-
horizontal bedding.

— These tunnel sections are, nevertheless, much more extended than in the case of
schistous rocks (compare Figs. 5.27 and 5.28 with Fig. 5.25). This was observed
already in Section 5.1: In tunnelling through schistous rocks the displacements remain
constant for dip angles of 80° to 90° (since no failure can occur in the schistosity), but
in stratified rocks even small deviations from 90° lead to bigger displacements. This is
particularly evident for oo =0.75 MPa (due to the considerably larger deformability
perpendicular to the layers than parallel thereto).
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Figure 5.28. Influence of the fold period of stratified rocks (oo= 10 MPa). Maximum,
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Case history of the Sedrun section of the Gotthard Base Tunnel

According to Section 2.1, the “schistosity influence factor” S, which combines the dip angle
and the strike direction of the planes of weakness to the tunnel axis, can be used as an
indicator, in order to predict the tunnel convergences. This was particularly evident in
Section 2.1 for a tunnel reach with constant degree of shearing of 4 (for the definition of the
degree of shearing: see Section 2.1): The large variability of the averaged convergences
(over all the measuring points) in this case was solely due to the change of the schistosity
orientation (cf. Fig. 5.29a). Therefore, this section will analyse this tunnel reach (NE tube,
chainage 1760 — 1900) and show, this time by means of numerical calculations, whether
the schistosity influence factor S can adequately express the squeezing variability.

A comprehensive description of the Sedrun Section and the related experiences can be
found in Section 2.1. The depth of cover amounts to about 800 m (go = 20 MPa). The rock
parameters of Table 5.1 correspond to a rock with medium degree of kakiritization (as the
shearing degree in this tunnel section amounts to 4 according to Section 2.1) and were
chosen on the basis of the report of Ingenieurgemeinschaft Gotthard-Basistunnel Sud
[119]. The computational model was already introduced in Section 5.2.2 (however, here
the whole 3D model must be considered, as there are no planes of symmetry). The dip
angle and the strike direction of the schistosity were implemented in the numerical model,
considering the geological records made during tunnel advance (cf. [20]). Since the tectonic
units are very disturbed, contrarily to Section 5.2.2, no equation for the folding of the
schistosity can be defined and thus dip angle and strike direction of the schistosity were
taken section-wise constant (see values in Fig. 5.29b). The resulting schistosity influence
factors (obtained with Eq. 2.1) are also given in Figure 5.29b.

Table 5.1. Rock parameters (according to [119]).

E Cm (pm WM Cs ‘ps ‘IIs v
[GPa] [MPa] [l [l [kPa] [l [l [
4.4 1.3 30 10 600 20 5 0.3

Figure 5.29c shows the numerically determined maximum, minimum and averaged
displacements along the tunnel, while Figure 5.29d compares them with the measured
values. One can recognise that the deformations obtained with the numerical calculations
are greater than the measured deformations. There are two main reasons for this: the
computed displacements include the pre-deformations; the computations consider an
unsupported tunnel. The pre-deformations and the installed support could be taken into
account computationally by a step-by-step simulation of tunnel excavation, but this
simulation would be very time-consuming without adding much value since the selection of
appropriate parameters itself is a difficult task (due to the natural variability of the rock mass
along the tunnel stretch). Hence, the calculated displacements can be compared only
qualitatively with the measured tunnel convergences.

Figure 5.29d presents the measured as well as calculated displacements 4, (according to

Section 2.1). They correspond to the average values of the five to seven measuring points
of each monitoring station. Depending on the position of the measuring points (which is not
exactly known), these calculated average values may be subject of some uncertainty.

Nevertheless, one can readily recognise that the distribution of the calculated
displacements along the tunnel is very similar to that of the measured ones, but the
squeezing variability is less pronounced than actually observed. According to Section 5.1,
the squeezing variability would be larger, had the tunnel convergences (rather than the
total displacements) been considered in the numerical modelling. The deformations would
then be on average 30% smaller (see Section 5.1) and thus the results of the numerical
modelling would be in better agreement with the measured convergences. The squeezing
variability would also be larger and thus more visible in the development of the
displacements, if an even smaller value for cs was chosen.
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Figure 5.29. (a) Average magnitude of the projections of the displacement vectors in the
cross-sectional plane of the tunnel normalised by the tunnel radius (u,/a) along the tunnel

as well as schistosity influence factor for chainage 1760-1900 of the NE tube, according to
Section 2.1; (b) Implemented dip angle ws and angle 6s between the tunnel axis and the
strike direction of the planes of weakness, as well as resulting schistosity influence factor
S; (c) Maximum, minimum and averaged displacements of the tunnel boundary obtained
with numerical calculations along the tunnel as well as schistosity influence factor S; (d)
Comparison between the measured convergences and the total displacements obtained
from the numerical calculations.
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Despite all the uncertainties mentioned before, the analysed case history shows that the
schistosity influence factor is a reliable indicator, which enables to determine in which
tunnel sections larger deformations have to be expected during tunnelling. Of course, this
presupposes that the schistosity orientation can be identified in advance. This information
can be obtained by means of advance probing (cf. Section 2.1).

Conclusions

The variation of the orientation of the planes of anisotropy is an important factor for the
squeezing variability and this, when tunnelling through schistous or stratified rock mass.
The results of numerical investigations indicate that, there is a mutual influence of the
alternating areas of favourable and unfavourable inclination of the anisotropy planes along
the tunnel. However, despite of this mutual influence, the folding leads to a considerable
variability of the rock deformations along the tunnel.

Furthermore, this chapter could show that the squeezing variability observed in the Sedrun
Section of the Gotthard Base Tunnel can be well understood with the help of numerical
calculations taking into account the orientation of the schistosity to the tunnel axis. In order
to predict the tunnel convergences, the “schistosity influence factor” S, which combines the
dip angle and the strike direction of the planes of weakness to the tunnel axis, can be used
as an indicator thus providing, in combination with advance core drilling, reliable indications
of the squeezing intensity.

As was already illustrated in Section 5.2.3, depending on the length of the tunnel sections,
which are parallel to the schistosity, and on the stabilising vicinity, the maximum
displacement may vary considerably. Of course, this influence is not taken into account
when predicting the convergences solely by means of the schistosity influence factor.

November 2019



1664 | On the variability of squeezing behaviour in tunnelling

The case histories of the Gotthard, Ceneri and Lotschberg Base Tunnel (Chapter 2) could
show that the squeezing deformations were mainly affected by the lithology, by the
schistosity orientations and the effect of nearby weaker or stronger zones. Those variations
— even if relatively small — may thus cause a significant variability of the squeezing
intensities along the tunnel, which may additionally be accompanied by a pronounced non-
uniformity of the displacements in the tunnel profile. Section 2.1 showed that the influence
of the spatial orientation of the schistosity on the tunnel convergences can be determined
by a simple, empirically proven (and later — in Chapter 5 — also theoretically justified)
equation, which in combination with advance core drilling allows reliable predictions of the
convergences. Therefore, the next chapters of this research report determined the
influence of the factors mentioned above, in order to use them as indicators during
construction for the timely identification and prediction of the squeezing behaviour.
Furthermore, the carbon section of the Létschberg Base Tunnel showed that considerable
long-term deformations occurred, which could be, inter alia, traced back to creep. It was
noticeable that with larger (short-term) tunnelling-induced deformations (occurring within a
distance of about 50 m behind the tunnel face), larger long-term deformations due to creep
occurred. Therefore, creep influences the squeezing intensity along the tunnel.

For a tunnel drive through heterogeneous rock mass consisting of alternating weak and
competent rock layers lying perpendicular to the tunnel axis (Chapter 3), depending on the
heterogeneity scale, a pronounced squeezing variability may occur (cf. Section 3.4). If the
alternating weak and competent rocks are very thin, the displacements are almost uniform
along the tunnel. For this special case, an analytical solution was derived which describes
the relationship between rock deformation and support pressure under the assumption of
rotational symmetry and plane strain conditions (Section 3.2). The derivation of this ground
response curve was mathematically demanding, as a variety of cases regarding the failure
state of the rock had to be considered (plastic and/or elastic behaviour of the weak and/or
the hard layers considering a plastic flow either only in the tunnel cross-sectional plane or
also perpendicular to it). This analytical solution is particularly important for practical
reasons, as numerical modelling of a narrow sequence of hard and weak rocks is very time-
consuming. Numerical calculations in Section 3.4, which consider the layers discretely,
could show that the analytically derived solution mentioned before is sufficiently accurate
for practical purposes if the thickness of the hard layers is less than about 5% of the tunnel
radius. Based on the above-mentioned analytically derived ground response curve, the
parameters of a mechanically equivalent homogeneous, isotropic and elasto-plastic
material are determined and presented in Section 3.3. This is very useful for design
purposes since it allows the use of common calculation methods and programs to solve
problems that do not meet the conditions of rotational symmetry or plane strain and this
even for thinly stratified rocks. For example, with the determined equivalent parameters,
one can easily determine the effectiveness of a lining system in TBM tunnelling. Of course,
the homogenised model provides only satisfactory results for small thicknesses of the
layers and not for thickly alternating weak and competent layers. Therefore, in Section 3.4
a simple equation was developed, which allows to determine the squeezing intensities for
all layer thicknesses in a quick and easy way, without making numerical modelling
necessary (at least not in the preliminary stages of design). By a comprehensive parametric
study, it could be shown that this equation is accurate enough for practical purposes.

Chapter 4 investigated the influence of the planes of anisotropy (schistosity, bedding) lying
parallel to the tunnel axis. When tunnelling through a heterogeneous rock mass consisting
of alternating weak and competent rock layers lying parallel to the tunnel axis, depending
on the heterogeneity scale, considerable non-uniformity of the distribution of the
deformations of the tunnel profile may occur. Even if the thicknesses of the alternating weak
and hard layers are very small, a considerable non-uniformity of the displacements in the
tunnel profile may occur. For this specific case, the rock mass can be perceived as a
homogeneous, but transversely isotropic material. For the latter, in Section 4.2, a
constitutive model was formulated and implemented in Abaqus, which describes the
behaviour of a stratified rock mass (using the homogenisation technique). The elasto-
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plastic parameters of this homogeneous and transversely isotropic medium depend on
fraction, strength and stiffness properties of the alternating layers. With this, the ground
response when tunnelling through thinly alternating weak and competent layers can be
investigated computationally (assuming plane strain conditions). As the homogenised
solution is particularly important for practical reasons (numerical modelling of a narrow
sequence of hard and weak rocks is very time-consuming), the estimation of the
displacements along the tunnel profile for given geotechnical condition is facilitated by
dimensionless diagrams — presented in Section 4.2 — that represent a valuable tool for
engineering practice, as they enable to determine the maximum and minimum
displacements in the tunnel profile for a wide range of geotechnical conditions. Even if the
response of the ground is anisotropic in this case, these design aids allow, analogously to
Section 3.3, to determine the parameters for an isotropic homogeneous rock mass, which
is equivalent to the isotropic rock mass in the sense that its tunnelling-induced
displacements are equal either to the maximum or to the minimum displacements of the
anisotropic model. As shown in Section 4.2.5, using this equivalent isotropic model makes
it possible to find an upper and a lower bound of the displacements in more complex
problems (that do not meet the condition of plane strain).

Numerical calculations in Section 4.3, which analyses the influence of the layer thickness
by considering the individual layers discretely, could show that the homogenised model
mentioned before is sufficiently accurate for practical purposes if the thickness of the hard
layers is less than about 5% of the tunnel radius. As this criterion is also valid for a
sequence of alternating layers lying perpendicular to the tunnel axis, this criterion is
applicable for any orientation of the layers to the tunnel axis. Furthermore, Section 4.3
could show that, for very thick formations, the non-uniformity of displacements in the profile
nearly disappears if the weak or the hard rock formation lies at a distance to the tunnel axis
of at least 5 times the tunnel radius, so that, for design purpose, the weak or the hard
formation can be neglected, respectively. Therefore, numerical calculations do not have to
be performed (at least in the preliminary stages of design).

Finally, Section 4.4 investigated the squeezing behaviour in schistous rock mass — which
is characterised by very thin weak discontinuities and thus represents, from the mechanical
point of view, a special case of a stratified rock mass — when tunnelling parallel to the
planes of schistosity. (The schistosity is irrelevant when tunnelling perpendicular to the
planes of weakness.) As the implemented constitutive model for (thinly) stratified rocks is
inefficient in computing terms for the borderline case of schistosity, in Section 4.4, a
constitutive model was formulated and implemented specifically for schistous rock. With
this, numerical calculations (assuming plane strain conditions) could be carried out in
Section 4.4 that showed that the schistosity may affect rock deformations adversely,
particularly if its cohesion and friction angle are small. If, in addition, the uniaxial
compressive strength of the matrix is small, the squeezing deformations may be
considerably larger than those occurring in non-schistous rocks. In order to better estimate
the influence of the schistosity, dimensionless diagrams were developed and presented in
Section 4.4, which make it possible to estimate the maximum and minimum displacements
in the tunnel profile easily for given geotechnical conditions.

Chapter 5 investigated the influence of the orientation of the planes of anisotropy (bedding,
schistosity) to the tunnel on the tunnel convergences. As the deformations determined
under the assumption of plane strain conditions (as in the Chapters 3 and 4) include the
deformations that occur ahead of the tunnel face (so-called “pre-deformations”) and are
thus considerably larger than the convergences of the excavated tunnel profile, in Section
5.1, the influence of the planes of anisotropy on the convergences is investigated using
spatial calculation models with arbitrary orientation of the planes of anisotropy relative to
the tunnel axis. This section could show, first, that there are relevant differences to the well-
known case of an isotropic rock mass and, second, that the numerical calculations
reproduce well the empirically determined relationship between convergence and spatial
orientation of the schistosity considering the so-called “schistosity influence factor” (which
combines the dip ws and the strike direction 8s of the planes of weakness to the tunnel
axis), which was developed based on the data from the Gotthard Base Tunnel (cf. Section
2.1). Based on this relationship, a simple equation, which is accurate enough for most
tunnelling problems, was developed which enable to calculate the convergence for all
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orientation of the planes of anisotropy to the tunnel axis, taking into account the schistosity
influence factor. With this equation, for a tunnel drive encountering schistous or stratified
rock masses, costly spatial numerical analyses do not have to be carried out (at least not
in the preliminary design stages) for estimating the tunnel convergences.

In fact, the variation of the orientation of the planes of anisotropy along the tunnel axis is
an important factor for the squeezing variability and this, when tunnelling through schistous
or stratified rock mass. This is clearly recognisable in Section 5.2, which investigated the
influence of a folding on the distribution of the deformations along the tunnel numerically.
The folding was implemented as a sinus function in the constitutive model, which is defined
by its amplitude and its period. The results of the numerical investigations indicate that,
there is a mutual influence of the alternating areas of favourable and unfavourable
inclination of the anisotropy planes along the tunnel. However, despite of this mutual
influence, the folding leads to a considerable variability of the rock deformations along the
tunnel. Furthermore, the Section 5.2 could show, (i), that the squeezing variability observed
in the Sedrun Section of the Gotthard Base Tunnel can be well understood with the help of
numerical calculations taking into account the orientation of the schistosity to the tunnel
axis and, (i), that the “schistosity influence factor” can be used as a reliable indicator for
the estimation of the squeezing intensities during advance, in combination with advance
core drilling.

An overview of the design aids, which were developed in the context of this research
project, is given in Table 1.1.

In this research project, the time-dependence of the rock behaviour due to consolidation
was not considered. The existence of underground water or high pore water pressure
favours the development of rock deformations ([1], [9], [17], efc.). In a saturated rock the
permeability governs the rate of the deformations associated with the dissipation of excess
pore pressures. Permeability variations may therefore lead to variable squeezing
intensities. In particular, thin permeable interlayers can cause a substantial acceleration of
the deformations as they lead to a shortening of the drainage paths (cf. Fig. 6.1). This
hypothesis was put forward by Anagnostou and Kovari [120], but was not investigated
quantitatively so far. Therefore, the influence of the heterogeneities of the ground with
respect to its hydraulic characteristics on the squeezing variability should be subject of
further research.

permeable

permeable

almost
impermeable

b)

a)

Figure 6.1. Shortening of the drainage paths due to, a) permeable layers, b) adjacent
permeable formation [120].
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This appendix presents the dimensionless diagrams introduced in Section 4.2. Table 1
gives an overview of the dimensionless diagrams.

Table 1. Overview of the dimensionless diagrams.

Figure displacement 0./0,
1 Unmax/Uw,2D
2 Uaverage/Uw,2D 0.0
3 Unmin/Uw, 2D
4 Unmax/Uw,2D
5 Uaverage/Uw,2D 0.1
6 Unmin/Uw, 2D
7 Unmax/Uw,2D
8 Uaverage/Uw,2D 0.2
9 Unmin/Uw, 2D
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Figure 7. Nomograms for Umax/uw,2o and 0a/co = 0.2.
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Figure 9. Nomograms for umin/uw,20 and oa/co = 0.2.
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This appendix presents the dimensionless diagrams introduced in Section 4.4. Table 2

gives an overview of the dimensionless diagrams.

Table 2. Overview of the dimensionless diagrams.
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Figure 10. Nomograms for ¢m = 30° and ga/00 = 0.
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Figure 12. Nomograms for om = 30° and 0a/00 = 0.2.
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Figure 15. Nomograms for ¢m = 25° and 02/00 = 0.2.
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Latin symbols

a

A

b

c

Ceq

Ch, Cw

ChH, ChR

Cs, Cm

d

d

dr

der, det, de:
dern, degn, dezn
derw, detw, dezw
doy, doy, do:
dorn, doth, dozn
dorw, dotw, dozw
E

Ey, E2

Eeq

Eeq,max, Eeq,min

Eh, Ew
Exx, Eyy
F

fo(...)
fi(...)
fr(...)
F1

F

Fv

Mmn, Mw
Mm, Ms

Mg=20°
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tunnel radius

amplitude of the folding

width of the tunnel

cohesion of the ground

equivalent cohesion of the simplified isotropic rock mass

cohesion of the hard and of the weak layers

peak and residual (i.e., post-peak) cohesion of the hard layers

cohesion of the schistosity and the surrounding matrix

thickness of the lining (in Section 4.2.5.1)

distance between the measuring point and the fault zone (except in Section 4.2.5.1)
distance between the tunnel face and the monitoring station

radial, tangential and axial strain increment of the equivalent continuum
radial, tangential and axial strain increment of the hard layers

radial, tangential and axial strain increment of the weak layers

radial, tangential and axial stress increment of the equivalent continuum
radial, tangential and axial stress increment of the hard layers

radial, tangential and axial stress increment of the weak layers

Young’s modulus of the rock mass

Young’s modulus of the composite parallel and perpendicular to the layers
equivalent Young’'s modulus of the simplified isotropic rock mass

equivalent Young’'s modulus of the simplified isotropic rock mass fitted with the maximum
or minimum GRC of the equivalent continuum

Young’s modulus of the hard and of the weak layers
Young’s modulus of the composite in x- and y-direction
degree of shearing of the rock mass in the monitoring station
function of ...

function of ...

function of ...

function of ...

function of ...

value for the determination of the equivalent parameters
value for the determination of the equivalent parameters
degree of shearing of the rock mass in the adjacent rock zone
shear modulus of the composite

thickness of the hard layers

distance of the hard formation to the tunnel axis

influence factor of the rock mass at the monitoring station
influence factor of the adjacent fault zone

influence factor of the adjacent rock zone

initial stress ratio

stiffness of the lining (cf. [63])

stiffness of the shield (cf. [63])

half of the period of the folding (in Section 5.2)

length of the shield (in Section 3.3.5)

initial length of the planes of anisotropy before folding
extent of the adjacent rock zone

value for the determination of the equivalent parameters
value for the determination of the equivalent parameters

equivalent inclination of the failure surface of the simplified isotropic rock mass (function
of the friction angle)

inclination of the failure surface of the hard and of the weak layers (function of the friction
angle)

inclination of the failure surface of the schistosity and the surrounding matrix (function of
the friction angle)

inclination of the failure surface for ¢ = 20°

number of schistosity planes in the REV

radial direction of the tunnel
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S11, S12, S13
S22, S33, S44
S11, S12, S21
S22, S33

T

t

t

u

u(0)

Ua

Ua,r, Uat

Uaverage, Umax, Umin
Uaverage,hom, Umax,hom
Umin,hom

u

Uc

u

c

Ur
Un,2D
Uk

Ulong
Um,2Dp
Umax, i1, Umin,it

uL

Ushort

Utot
Uw,2D

Ux, Uy

November 2019

normal vector of the schistosity planes

ground pressure acting upon the shield and the lining

radius, i.e., distance to the tunnel axis

boring radius for TBM tunnelling

influence factor of the schistosity

constants for defining Hooke’s law of the composite

constants for defining Hooke’s law of the composite

constants for defining Hooke’s law of the composite for plane strain conditions
constants for defining Hooke’s law of the composite for plane strain conditions
lithological type at the monitoring station

thickness of the fault zone (in Section 2.2)

time after excavation (in Sections 2.1.6 and 2.3)

magnitude of the displacement vector at the tunnel boundary

displacements occurring ahead of the tunnel face

radial displacements of the equivalent continuum at the tunnel boundary (for a tunnel
drive perpendicular to the layers)

displacement at the tunnel boundary in radial and tangential direction

averaged, maximum and minimum magnitude of the displacement vector along the tunnel
boundary

averaged and maximum magnitude of the displacement vector of the homogenised rock
mass along the tunnel boundary

minimum magnitude of the displacement vector of the homogenised rock mass along the
tunnel boundary

average magnitude of the displacement vectors

magnitude of the projection of the displacement vector in the cross-sectional plane of the
tunnel

average magnitude of the projections of the displacement vectors in the cross-sectional
plane of the tunnel

displacement of the floor

radial displacements that would occur in the absence of the weak layers

horizontal convergences

difference between the displacement that develops within 150 days (after reaching a face
distance of 50 m to the monitoring station) and the displacement that develops after
reaching a face distance of 5 m to the monitoring station

radial displacements that would occur in the absence of the schistosity

maximum and minimum magnitude of the displacement vector along the tunnel boundary
for a tunnel drive parallel to the planes of weakness

magnitude of the displacement vector along the tunnel boundary for a tunnel drive
perpendicular to the planes of anisotropy
average radial component of the displacement vectors

radial displacement of the tunnel crown
radial displacement of the tunnel crown far behind the face

magnitude of the displacement vector that develops as the face moves from a distance
of 5 m to a distance of 50 m ahead of the monitoring station

magnitude of the displacement vectors

radial displacements that would occur in the absence of the hard layers or that would
occur in a very long weak zone

displacement at the side wall (in x-direction) and at the crown (in y-direction)
longitudinal displacement

longitudinal displacement of the tunnel crown

deformation velocity

thickness of the weak layers

co-ordinate

co-ordinate

thickness fraction of the hard and of the weak layers in the REV
co-ordinate

co-ordinate

co-ordinate

shearing degree of the fault zone (in Section 2.2)

constant (in Section 4.2)
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Greek symbols

a

a
ar, az
ah

Qw

B
B

B1, B2

Y1, y2

Vs

Vxy

o

o

01, 02

Au

Any, AYXZ, AVyz

A Yxy,m, A Yxzm, A Yyzm

Any,s, Asz,s, AVyz,s
A&xy, Asy}’y Agz;

Afxx,m, Agyy,m, Afzz,m

Aéxxs, Agyy,s, A€z s
A0xx, AOyy, AC;,

AUxx,m, AO'yy,m, AO'zz,m
AO'XX,S, AO'yy,s, AO'zz,s

A Txy, ATxz, A Tyz

ATxy,m, Asz,m, ATyz,m

ATxy,s, ATxzs, ATyz,s
Au

AUmax,ii, AUmin,i
Aur

&1

Ern &t

Ex, Eyy, E22

Exy, Exz, Eyz

&f

¢

6

Os

ﬂeq

An, Aw
Heq
Hhy L

Vi1, V2

Ph,2D
Pw,2D
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angle between the cross-sectional plane of the tunnel and the displacement vector at the
tunnel crown (in Section 2.1)

ratio between Ex/Ew and 04/04w (in Section 3.3)

constants according to Hefny and Lo [54]

ratio between the Young's modulus Ex and the uniaxial compressive strength of the hard
layers 0an

ratio between the Young's modulus Ex and the uniaxial compressive strength of the hard
layers Odw

empirical curve-fitting parameter (in Section 2.1)

angle between the direction of the maximum principal stress and the planes of weakness
(except in Section 2.1)

constants according to Hefny and Lo [54]

constants according to Hefny and Lo [54]

shearing strain increment

shear strain of the composite

reduction factor (in Sections 3.1 and 4.2)

angle between the planes of weakness and the loading direction (in Sections 4.2 and 4.4)
constants according to Hefny and Lo [54]

horizontal convergences

homogenised shearing strain increment in the xy-, xz- and yz-plane

shearing strain increment in the matrix in the xy-, xz- and yz-plane

shearing strain increment along the schistosity in the xy-, xz- and yz-plane
homogenised normal strain increment in x-, y- and z-direction

normal strain increment in the matrix in x-, y- and z-direction

normal strain increment in the schistosity in x-, y- and z-direction

homogenised normal stress increment in x-, y- and z-direction

normal stress increment in the matrix in x-, y- and z-direction

normal stress increment in the schistosity in x-, y- and z-direction

homogenised shear stress increment in the xy-, xz- and yz-plane

shear stress increment in the matrix in the xy-, xz- and yz-plane

shear stress increment in the schistosity in xy-, xz- and yz-plane

convergences, i.e., displacements far behind the face minus pre-deformations (defined
as

u-u(0))

maximum and minimum convergence for a tunnel drive parallel to the planes of anisotropy
convergence for a tunnel drive perpendicular to the planes of anisotropy

strain in direction of the maximum principal stress

radial and tangential strain of the equivalent continuum

strain of the equivalent continuum in x-, y- and z-direction

shear strain of the equivalent continuum in the xy-, xz- and yz-plane

compression of the folding

angle between the crown and the displacement in the cross-sectional plane of the tunnel
(see inset of Fig. 5.23)

angle according to Hefny and Lo [54]

angle between the tunnel axis and the strike direction of the planes of weakness
Lamé constant of the equivalent continuum

Lamé constant of the hard and of the weak layers

Lamé constant of the equivalent continuum

Lamé constant of the hard and of the weak layers

Poisson’s ratio of the rock mass

Poisson’s ratio of the composite parallel and perpendicular to the layers
equivalent Poisson’s ratio of the simplified isotropic rock mass

Poisson’s ratio of the hard and of the weak layers

external radius of the plastic zone, where in-plane failure is reached in the hard or in the
weak layers

external radius of the plastic zone, where out-of-plane failure is reached in the hard or in
the weak layers

external radius of the plastic zone, where in-plane failure is reached in both, in the hard
and in the weak layers

external radius of the plastic zone, where out-of-plane failure is reached in both, in the
hard and in the weak layers

radius of the plastic zone of the homogeneous competent ground
radius of the plastic zone of the homogeneous weak ground
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g

0o

g1, 03
Oa

Od
Od,eq

Od,eq,max, Od,eq,min

0d,h, Tdw

Od,s, Odm
(O'd,w/O'o)cor

( (of°] w/ O'O)crit
Omax,h, Omin,h
Omax,w, Ominw
O, Ot, Oz

Orh, Oth, Ozh
Or,w, Otw, Ozw
Os

Oxx, Oyy, Ozz
Oxx,h, Oyy,h, Ozz,h
Oxx,w, Oyy,w, Ozzw
Op

Or,p1

Or,p2

T

Txy, Txz, Tyz

¢

Peq

QPeq,max, Peq,min

Pn, Puw

Ps, Pm

Weq

Weq,max, Weq,min

Wh, Yw
Ws, Ym
Ws

Ws,max
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normal stress

initial stress

maximum and minimum principal stresses

support pressure of the tunnel

uniaxial compressive strength of the equivalent continuum

equivalent uniaxial compressive strength of the simplified isotropic rock mass

equivalent uniaxial compressive strength of the simplified isotropic rock mass fitted with
the maximum or minimum GRC of the equivalent continuum

uniaxial compressive strength of the hard and of the weak layers

uniaxial compressive strength of the schistosity and the surrounding matrix
characteristic value for the determination of the equivalent parameters
characteristic value for the determination of the equivalent parameters
maximum and minimum stress of the hard layers

maximum and minimum stress of the weak layers

radial, tangential and axial stress of the equivalent continuum

radial, tangential and axial stress of the hard layers

radial, tangential and axial stress of the weak layers

value for the determination of the equivalent parameters

stress of the equivalent continuum in x-, y- and z-direction

stress of the hard layers in x-, y- and z-direction

stress of the weak layers in x-, y- and z-direction

minimum support pressure for which the rock mass remains elastic

minimum support pressure for which the hard and the weak layers remain elastic
minimum support pressure for which the hard or the weak layers remain elastic
shear stress

shear stress of the equivalent continuum in xy-, xz- and yz-direction

friction angle of the ground

equivalent friction angle of the simplified isotropic rock mass

equivalent friction angle of the simplified isotropic rock mass fitted with the maximum or
minimum GRC of the equivalent continuum

friction angle of the hard and of the weak layers
friction angle of the schistosity and of the surrounding matrix
equivalent dilatancy angle of the simplified isotropic rock mass

equivalent dilatancy angle of the simplified isotropic rock mass fitted with the maximum
or minimum GRC of the equivalent continuum

dilatancy angle of the hard and of the weak layers

dilatancy angle of the schistosity and of the surrounding matrix
dip angle of the planes of weakness

maximal dip angle of the planes of weakness
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Zusammenfassung der Projektresultate:

Die Intensitdt der Gebirgsverformung in einer druckhaften Strecke ist in der Regel stark
verdnderlich. Trotz gleichbleibender Ausbruchsicherung, Uberlagerungshéhe und
lithologischer Zusammensetzung lassen sich haufig auf kurzer Distanz betrachtliche
Anderungen der Konvergenzen feststellen. So lange die Griinde fiir diese Variabilitat nicht
bekannt sind, sind zuverldssige Voraussagen des Gebirgsverhaltens beim Vortrieb schwierig.
Letztere sind aber wichtig, um die Sicherungsmittel und den Ausbruchsquerschnitt zu
bestimmen und damit kostspielige und aufwéandige Nachprofilierungsarbeiten zu
vermeiden.

Die Analyse von ausgewahlten Vortrieben des AlpTransit Projektes zeigt, dass die
Variabilitdt der Druckhaftigkeit auf die Heterogenitat des Gebirges in verschiedenen
Massstaben sowie auf die variierende Raumstellung der Trennflachen (Schieferung,
Schichtung) in Bezug zur Tunnelachse zurtickgeftihrt werden kann.

Um die Sicherheit und Wirtschaftlichkeit beim Tunnelbau in druckhaftem Gebirge zu
erhohen, wurde der Einfluss dieser Faktoren auf die Konvergenzen quantitativ (mittels
analytischer Losungen oder numerischer Berechnungen) untersucht, so dass diese als
Indikatoren fir dierechtzeitige Identifikation und Vorhersage des druckhaften Verhalten
genutzt werden kénnen. Besondere Beachtung wurde Faktoren geschenkt, deren kleine
Veranderungen einen starken Einfluss auf die Intensitat der Konvergenzen haben. Basierend
auf diesen quantitativen Untersuchungen wurden Entscheidungshilfen entwickelt, welche
dem projektierenden Ingenieur helfen sollen, die Variabilitét der Druckhaftigkeit zu
beurteilen und besser zu erfassen.
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Zielerreichung:

Die Projektziele wurden indem erreicht, dass die Griinde der oft beobachteten Variabilitit d
er Druckhaftigkeit analysiert und Hilfsmittel fir die Projektierung erarbeitet wurden.

Folgerungen und Empfehlungen:

Die Variabilitét der Druckhaftigkeit kann auf die Heterogenitat des Gebirges sowie auf
Anderungen der Raumstellung der Trennflachen (Schichtung, Schieferung) zuriickgefiihrt
werden. Der Einfluss dieser Faktoren kann im Rahmen der Vorprojektierung durch die in
diesem Forschungsprojekt erarbeiteten iviethoden rechnerisch erfasst werden.

Publikationen:
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Mezger, F., Anagnostou, G., and Ziegler, H.J. (2013). On some factors affecting squeezing
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Congress,
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Beurteilung der Begleitkommission:

Beurteilung:

Das Forschungsprojekt ist umfassend und weist ein hohes wissenschaftliches Niveau sowie
ein wertvolles praktisches Nutzen auf. Die Analysen zu ausgewéhlten Fallbeispielen sind
griindlich durchgefiihrt und schlissig interpretiert. Der Einfluss der Heterogenitit des
Gebirges auf seiner Druckhaftigkeit ist plausibel und detailliert dargelegt. Die
durchgefiihrten numerischen Berechnungen sowie die damit erarbeiteten Hilfsmittel lassen
eine Prognose der Deformationen zu, was sehr wertvoll ist und konkreten Einfluss auf die
Arbeitssicherheit und die Wirtschaftlichkeit haben kann, wenn die Uberlegungen
zeitgerecht umgesetzt werden. Die durchgefiihrten Vergleichsrechnungen untermauern die
Schlussfolgerungen.

Umsetzung:

Insbesondere die im Rahmen des Forschungsprojekts erarbeiteten Hilfsmittel fiir die
Projektierung werden Eingang in die Praxis finden und den projektierenden Ingenieur in der
Entscheidungsfindung respektive in seiner Planungsarbeit unterstiitzen. Die aus der Analyse
von mehreren Fallbeispielen (CH-Basistunnel, welche in den letzten Jahren gebaut wurden)
gewonnenen Erkenntnisse stltzen die Aussagen im Forschungsbericht ab und bestétigen
deren Umsetzbarkeit in der Praxis.

weitergehender Forschungsbedarf:

Die mdgliche Zeitabhangigkeit des Gebirgsverhaltens infolge Konsolidation wird hier nicht
berticksichtigt. Der Einfluss der Heterogenitdt der hydraulischen Eigenschaften des Gebirges
auf seiner Druckhaftigkeit soll in zukiinftigen Forschungsprojekten untersucht werden.
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