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Abstract 

Travel time is an important network performance measure and it quantifies congestion in a manner 

easily understood by all transport users. In urban networks, travel time estimation is challenging due to 

number of reasons such as, fluctuations in traffic flow due to traffic signals, significant flow to/from 

mid-link sinks/sources, etc. In this research a methodology, named CUmulative plots and PRobe 

Integration for travel timE estimation (CUPRITE), has been developed, tested and validated for 

average travel time estimation on signalized urban network. It provides link exit movement specific 

travel time and can be applied for route travel time estimation.  

The basis of the methodology lies in the classical analytical procedure of utilizing cumulative plots at 

upstream and downstream locations for estimating travel time between the two locations. The classical 

procedure is vulnerable to detector counting error and non conservation of flow between the two 

locations that induces relative deviation amongst the cumulative plots (RD). The originality of the 

methodology resides in the integration of cumulative plots with probe vehicle data with the objective 

to address the RD issue.  

The methodology is tested rigorously using traffic simulation for different scenarios with different 

possible combinations of sink, source and detector error. The performance of the proposed 

methodology has been found insensitive to percentage of sink or source or detector error. For a link 

between two consecutive signalized intersections and during undersaturated traffic condition, the 

concept of virtual probe is introduced and travel time can be accurately estimated without any real 

probe. For oversaturated traffic condition, the methodology requires only few probes per estimation 

interval for accurate travel time estimation.  

The methodology is also validated with real data collected from number plate survey at Lucerne, 

Switzerland. Two tailed t-test (at 0.05 level of significance) results confirm that travel time estimates 

from the methodology are statistically equivalent to real estimates from number plate survey.  

The testing and validation of the methodology have demonstrated that it can be applied for accurate 

and reliable travel time estimation. The current market penetration of probe vehicle is quite low. In 

urban networks, availability of a large number of probes per estimation interval is rare. With limited 

number of probe vehicles in urban networks, the methodology can significantly enhance the accuracy 

of travel time estimation.  

 

Keywords: Travel time, urban network, signalized network, cumulative plots, probe vehicle, detector 

error, mid-link sink, mid-link source. 
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Résumé 

Sur un réseau routier, le temps de parcours est un indicateur de performance très important qui 

quantifie la congestion d‘une façon compréhensible par tous les usagers. En environnement urbain, 

l‘estimation des temps de parcours peut s‘avérer complexe en raison d‘un certain nombre d‘éléments: 

fluctuations du débit du aux feux de signalisation, débit non négligeable provenant de sources/puits sur 

le parcours etc. Dans ce travail, une méthodologie, nommé CUPRITE (CUmulative plots and PRobe 

Integration for Travel timE estimation), a été développée, testée et validée pour l‘estimation d‘un 

temps de parcours moyen sur un réseau urbain équipé de signalisation lumineuse. Elle fournit un 

temps de parcours en fonction du mouvement spécifique de sortie sur un lien et peut être appliquée 

pour l‘estimation du temps de parcours du trajet.  

La procédure de base de méthodologie consiste à utiliser la procédure classique analytique 

d‘utilisation des courbes cumulatives en amont et en aval d‘un point donné dans le but d‘estimer le 

temps de parcours entre deux points. Toutefois, cette procédure est vulnérable face aux erreurs de 

mesure des capteurs et à la non-conservation du débit entre deux points, ce qui entraine des erreurs 

relatives entre les courbes cumulatives (ER). 

L'originalité de méthodologie consiste à intégrer des courbes cumulatives avec des données de 

véhicule traceur avec l'objectif d'aborder la problématique des erreurs relatives (ER).  

De méthodologie a été testée rigoureusement avec des simulations de plusieurs scénarii pour 

différentes combinaisons possibles de « puits » (perte de véhicules à mi-parcours), de sources ou 

d‘erreurs de capteurs. Les performances restent stables quels que soient les pourcentages de ces 

différentes perturbations. Pour un lien entre deux intersections signalisées en régime non saturé, le 

concept de véhicule traceur « virtuel » est introduit, qui permet d‘estimer précisément les temps de 

parcours sans véhicule traceur réel. Pour des conditions saturées, de méthodologie requiert seulement 

quelques données de véhicules traceurs par intervalle pour une estimation précise du temps de 

parcours. 

De méthodologie a également été validée avec des données réelles collectées par reconnaissance de 

plaques d‘immatriculation à Lucerne (Suisse). Les résultats des tests de Student bilatéraux (à un 

niveau de significativité de 0.05) confirment que les estimations de temps de parcours de 

méthodologie sont statistiquement équivalentes aux estimations réelles à partir des plaques 

d‘immatriculation. 

Les tests et la validation de méthodologie ont montré que la méthode peut être appliquée pour des 

estimations précises et fiables de temps de parcours. Actuellement, le taux de pénétration des 

véhicules traceurs dans le marché actuel est assez faible et il y a peu de données en milieu urbain. 

Cependant, même avec peu de données ―traceurs‖, de méthodologie peut améliorer de façon 

significative la précision des estimations de temps de parcours. 

 

Mots clés: Temps de parcours, réseau urbain, réseau équipé de signalisation lumineuse, courbes 

cumulatives, véhicules traceurs, erreurs de capteurs. 

 





 

 
v 

Zusammenfassung 

Die Fahrzeit ist ein wichtiger Indikator für die Leistung eines Strassennetzes. Sie erlaubt es, 

Verkehrsüberlastungen auf eine für alle Verkehrsteilnehmer verständliche Weise zu bewerten. In 

städtischen Strassennetzen ist die Fahrzeitbestimmung aufgrund von mehreren Faktoren sehr komplex: 

Schwankungen der Verkehrsbelastung durch Lichtsignalanlagen, bedeutender Verkehrsfluss von/nach 

Quellen und Senken innerhalb eines Streckenabschnitts, usw. In dieser Forschungsarbeit wurde eine 

Methododik für die Bestimmung der durchschnittlichen Fahrzeit in signalisierten städtischen 

Strassennetzen entwickelt, getestet und validiert. Die Methododik CUPRITE (CUmulative plots and 

PRobe Integration for Travel timE estimation) liefert spurgenaue Strecken-Fahrzeiten und kann für die 

Bewertung von Routen-Reisezeiten angewendet werden. 

Die Methodik beruht auf einem klassischen analytischen Verfahren, welches  Diagramme von 

kumulierten flussaufwärts und –abwärts gelegenen Verkehrszählungen verwendet, um die Fahrzeit 

zwischen zwei Standorten zu bestimmen. Allerdings ist dieses Verfahren anfällig für Zählfehler der 

Fahrzeug-Detektoren und für die Nicht-Erhaltung des Verkehrsflusses zwischen zwei Standorten 

(Verlust/Zunahme des Verkehrsflusses durch Quellen und Senken innerhalb der Strecke). 

Die Originalität der neuen Methodik liegt in der Integration der kumulativen Diagramme mit Daten 

von Messfahrzeugen, um den Effekt der oben genannten Fehlerquellen zu reduzieren. 

Die Methodik wurde ausgiebig anhand von Verkehrs-Simulationen in verschiedenen Szenarien 

getestet. Dabei wurden unterschiedliche Kombinationen von Quellen und Senken innerhalb der 

Strecke mit verschiedenen Fehlern der Fahrzeug-Detektoren geprüft. Die Leistung der 

vorgeschlagenen Methodik blieb unabhängig von der Stärke der verschiedenen Störungen. Für eine 

Strecke unter ungesättigten Verkehrsbedingungen zwischen zwei aufeinanderfolgenden und 

signalisierten Kreuzungen wurde ein neues Konzept eingeführt. Dieses beruht auf virtuellen 

Messfahrzeugen und erlaubt es, die genaue Fahrzeit zu bestimmen ohne dafür reale Messfahrzeuge zu 

verwenden. Bei gesättigten Verkehrsbedingungen erfordert die Methodik nur wenige Daten von realen 

Messfahrzeugen für eine genaue Bestimmung der Fahrzeit. 

Die Methodik wurde ebenfalls mit realen Daten aus Luzern in der Schweiz validiert, welche durch die 

Erfassung von Nummernschildern erhoben wurden. Resultate des zweiseitigen t-Tests (bei einem 

Signifikanzniveau von 0.05) bestätigten, dass die Methodik Fahrzeiten liefert, welche nicht statistisch 

signifikant von den realen Daten abweichen. 

Die Prüfung und Validierung der Methodik hat gezeigt, dass sie für die präzise und zuverlässige 

Fahrzeitbestimmung angewendet werden kann. Zurzeit ist die Verbreitung von Messfahrzeugen relativ 

gering und nur wenige solche Daten sind in städtischen Strassennetzen verfügbar. Aber auch mit 

begrenzten Daten von Messfahrzeugen erlaubt die Methodik eine Fahrzeitbestimmung mit deutlich 

vebesserter Genauigkeit. 

 

Schlüsselwörter: Fahrzeit, städtisches Strassennetz, signalisiertes Strassennetz, kumulative 

Diagramme, Messfahrzeuge, Fehler der Fahrzeug-Detektoren, Quellen innerhalb einer 

Strecke, Senken innerhalb einer Strecke. 
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Executive summary 

This research develops methodology for average travel time estimation on signalized urban networks 

by integrating multisource data (detector data, signal controller data and probe vehicle data).  

Travel time information quantifies the performance of the network and is generally considered as an 

important performance measure in transportation studies. Travel time information is easily perceived 

by the road users and has the potential to reduce congestion on both temporal and spatial scales. 

Reducing congestion maximizes the efficiency and capacity of the network, providing smooth traffic 

flow which in turn reduces vehicle emissions and energy consumption.  

Different techniques are applied to estimate travel time on traffic networks. These techniques depend 

on the type of traffic data retrieval system, that vary from traditional inductive loop detectors to 

advance vehicle tracking equipments such as GPS and mobile phone carried by the driver. In this 

research, vehicle equipped with vehicle tracking equipment is referred as probe vehicle. The 

state-of-the-art for travel time estimation techniques is provided in Chapter 2. A majority of literature 

on travel time estimation is on freeways and cannot be applied as it is on urban networks due to the 

different behavior of traffic on the two facilities. The complexities related to the urban network 

includes: a) interrupted traffic due to conflicting areas such as intersections (signalized or non 

signalized) and significant delay from the interruption; b) significant traffic flow from a mid-link 

source and/or to a mid-link sink; c) significant difference in travel time for different turning 

movements associated with a link; and d) mid-link delay due to mid-link interruptions such as 

pedestrian crossing, or a leading vehicle turning towards a side street etc.  

Majority of models for travel time estimation on urban networks consider the delay at intersection. 

The effect of flow to/from mid-link sinks/sources is not considered. The models generally provide 

average travel time for the whole link, which may not be a true representative of travel time for 

different link exit turning movements. Moreover, the performance of the models with respect to 

detector counting error is not evaluated. Though, one can observe detector counting error of ±5% even 

under normal running conditions.  

Models based on probe vehicle data assume that there is sufficient number of probe vehicles per 

estimation interval. The current market penetration of probe is low and the required number of probes 

per estimation interval is not easily available.  

The main goal of this research is to develop a methodology that should address the above mentioned 

complexities in urban networks. The objectives of the research are as follows: 

i. Develop a methodology for movement specific travel time estimation on urban 

signalized networks utilizing the multisource data (detector data, signal timings and 

probe vehicle data); 

ii. Rigorously test the methodology under controlled environment; and 

iii. Validate the methodology with real data from a typical urban network with mid-link 

sources and sinks etc.  

The classical analytical procedure for travel time estimation is based on cumulative plots, where the 

area between the cumulative plots at upstream and downstream locations is defined as the total travel 

time from upstream to downstream. For the application of the classical procedure, not only cumulative 

plots should be accurately estimated but also there should not be relative deviation amongst the plots 

(also termed as ―drift‖). The ideal situation is when detectors are perfect (i.e., they provide accurate 

vehicle by vehicle information) and vehicles are conserved between the upstream and downstream 

locations. However, these conditions are difficult to obtain in practice, especially in urban networks 

due to reasons such as detector error, presence of mid-link sources and sinks etc. 
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The basis of this research lies in the classical procedure. The originality of this research resides in 

analytical modeling by integrating cumulative plots with probe vehicle data to address the issues of 

relative deviation amongst the plots. The developed methodology is named as CUmulative plots and 

PRobe Integration for Travel timE estimation (CUPRITE). 

The core of this research report includes Chapter 3 to Chapter 5.  

In Chapter 3, the methodology is developed and is thoroughly tested under controlled environment. 

The chapter explores the fundamental relationship between cumulative plots and probe vehicle data. 

The core of the methodology is to fix the probe data to the downstream cumulative plot, D(t), and 

redefine the upstream cumulative plot, U(t), with the aim to remove or at least reduce the relative 

deviations amongst the cumulative plots. First the points from where U(t) should pass are defined by 

applying grid technique (Section 3.3.4) thereafter, the U(t) is redefined by applying vertical scaling 

and shifting technique (Section 3.3.5.2). Finally, the average travel time is estimated by applying 

classical procedure between redefined U(t) and D(t). 

The performance of the methodology is not sensitive to percentage of mid-link sink, mid-link source 

and detector counting error. It can provide accurate and reliable estimates for both undersaturated and 

oversaturated traffic conditions.  

For undersaturated traffic condition, the concept of virtual probes is introduced (Section 3.3.2) which 

significantly enhances the accuracy, without consideration of real probe.  

For oversaturated traffic condition or situations where virtual probes cannot be used, the integration of 

real probe data with cumulative plots significantly enhances the accuracy. Only one probe per 

estimation interval or three percent of vehicles traversing as probe is sufficient for accurate estimates 

for different magnitude of sink, source or detector counting error.  

The methodology is also compared with Probe-Only (a model solely based on probe data). Figure 

0-1provides the comparative results for accuracy of travel time estimation versus number of probes per 

estimation interval (Sn) for both CUPRITE and Probe-Only method. The accuracy from CUPRITE is 

generally more than 94% and increases with increase in number of probes. For Probe-Only 

significantly large number of probes is required to obtain accuracy comparable to that of CUPRITE. 

We define the reliability of an estimate as inversely proportional to standard deviation of accuracy. 

Figure 0-2 is a graph of standard deviation of accuracy versus Sn. It can be concluded that the 

integration of cumulative plots with probes not only improves the accuracy but also the reliability of 

travel time estimates.  
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Figure 0-1: Comparative results for accuracy: versus fixed number of probes per estimation period 
for CUPRITE and Probe-Only method.  
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Figure 0-2: Standard deviation of accuracy versus number of probes per estimation interval. 
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In Chapter 4, an approach for application of the methodology for exit movement specific link travel 

time is recommended. Followed by two different approaches for route travel time estimation 

(Component based and Extreme based) are explored and tested. Both the approaches provide 

comparable results (Figure 0-3). For Component based, data from each component is required and 

there are high chances of getting probe for each component. For Extreme based, only the detectors at 

upstream and downstream of the route are required but the required probe should traverse the 

complete route. 
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Figure 0-3: Comparative overview of Accuracy (AM) from Component based and Extreme based 
versus Sn. 

In Chapter 5, the methodology is validated on real data from a site in Lucerne city, Switzerland. The 

data is collected from eleven consecutive signalized intersection stretched along 1.5 km. The study site 

is a typical urban network with following characteristics: a) mixed traffic (with buses); b) on-street bus 

stops; c) significant loss and gain from mid-link sources and sinks, respectively; d) significant mid-

link delays due to pedestrian crossing. The detectors on the site are also not perfect. 

The traffic at the site is centrally controlled by VS-PLUS actuated signal controller. The detector 

counts and signal timings are obtained from the VS-PLUS data.  

Ground truth individual vehicle travel time is obtained from a manual number plate survey. In the 

survey the first four digits of the vehicle number plate and the corresponding time stamp when the 

vehicle enters the intersection were obtained. The survey was performed on 15th April, 2008 from 3:00 

p.m. to 6:00 p.m. The survey period captures both undersaturated and oversaturated traffic conditions. 

The required probes for the methodology are randomly selected from the survey data.  

Prior to the application of the methodology, both VS-PLUS data and number plate survey data are 

cleansed. The cleaned data is input to the methodology and it provides estimated average travel time 

which is statistically validated with ground truth average travel time obtained through survey. 
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Two tailed t-tests are computed to determine if difference exists between the real travel time from 

survey and the methodology application. The tests were considered significant at 0.05 and the result of 

the tests indicates that travel time estimates from the methodology are statistically equivalent to real 

estimates from number plate survey.  

Figure 0-4 and Figure 0-5 represents link exit movement specific validation result for left and through 

exit turning movements, respectively. In the figures, the black lines and the orange lines represents 

confidence bounds for travel time estimates from the survey and CUPRITE, respectively. It is 

observed that the travel time for different exit movements are quite different. For instance at 16:00 hr 

travel time for left movement (Figure 0-4) is around 250 s, whereas for through movement (Figure 

0-5) is around 120 s. Therefore, it is worth analyzing movement specific travel time. The results 

clearly indicate that the methodology can provide travel time for different exit turning movements on a 

link. It can accurately capture the time series of travel time and also short term oversaturation in the 

traffic flow (For instance 15:30 to 16:00 hr in Figure 0-4.).  

The validation results are promising and indicate the robustness of the proposed methodology.  
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Figure 0-4: Results for A→DLft with Sn = 1.  
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Figure 0-5: Results for A→DThru with Sn = 2.  

The testing and validation of the methodology has demonstrated that it can be successfully applied for 

accurate and reliable travel time estimation on urban networks. Hence, the goals and objectives of this 

research are achieved. The principal contributions of this research can be summarized as follows: 

i. A new methodology for travel time estimation on urban networks. It exploits 

advantages of both traffic detector counts and probe vehicle data. It addresses the 

weakness of individual data sources, by integrating the data from different sources for 

accurate and reliable travel time estimation.  

ii. The methodology provides exit movement specific travel time and hence detailed 

understanding of the network performance. For instance, excessive travel time for an 

exit movement can identify the critical movement at an intersection. 

iii. The methodology is robust with respect to mid-link sinks and sources, and detector 

counting error. Hence, have better network applicability.   

iv. It can capture accurate time series of travel time and also short-term oversaturated 

situations. Hence can be applied for developing historical database, which is the basic 

requirement for travel time prediction. 

v. The methodology only needs one probe per estimation interval or less than 3% of 

vehicles traversing the link as probe for accurate travel time estimates. The current 

probe market penetration is low and therefore the requirement of few number of probes 

makes the methodology directly applicable. 

vi. Though the development of methodology is based on urban networks, but it can be 

equally applied to freeway facilities. It can be easily integrated with traffic monitoring 

system to simultaneously monitor both urban and freeway networks. 

 



 

 
xiii 

Table of  contents 

ABSTRACT ...................................................................................................................................................... I 

RÉSUMÉ ....................................................................................................................................................... III 

ZUSAMMENFASSUNG ................................................................................................................................... V 

EXECUTIVE SUMMARY ................................................................................................................................ VII 

TABLE OF CONTENTS .................................................................................................................................. XIII 

LIST OF FIGURES ....................................................................................................................................... XVII 

LIST OF TABLES ...........................................................................................................................................XXI 

LIST OF ABBREVIATIONS AND SYMBOLS ................................................................................................... XXIII 

1 INTRODUCTION ..................................................................................................................................... 1 

1.1 BACKGROUND ............................................................................................................................................ 1 
1.2 RESEARCH MOTIVATION ............................................................................................................................... 2 
1.3 PROBLEM STATEMENT ................................................................................................................................. 2 

1.3.1 Complexities with urban network...................................................................................................... 2 
1.4 RESEARCH GOAL AND OBJECTIVES .................................................................................................................. 3 
1.5 RESEARCH SCOPE ........................................................................................................................................ 3 
1.6 CLASSICAL ANALYTICAL PROCEDURE FOR TRAVEL TIME ESTIMATION ....................................................................... 3 

1.6.1 Cumulative plot ................................................................................................................................. 4 
1.6.2 Travel time estimation using cumulative plots.................................................................................. 4 
1.6.3 Issue for application of classical analytical procedure on urban network ......................................... 5 

1.7 SCIENTIFIC RELEVANCE ................................................................................................................................. 6 
1.8 PRACTICAL RELEVANCE ................................................................................................................................. 6 
1.9 OUTLINE OF THE REPORT .............................................................................................................................. 7 

2 TRAVEL TIME ESTIMATION: A LITERATURE REVIEW ................................................................................ 9 

2.1 TRAVEL TIME ESTIMATION TECHNIQUES ........................................................................................................... 9 
2.2 FIXED SENSOR BASED ................................................................................................................................... 9 

2.2.1 Regression based ............................................................................................................................. 10 
2.2.2 Queueing theory based ................................................................................................................... 13 
2.2.3 Traffic flow theory based ................................................................................................................. 18 
2.2.4 Pattern recognition based ............................................................................................................... 20 
2.2.5 Time series analysis ......................................................................................................................... 23 
2.2.6 Neural Networks based ................................................................................................................... 24 
2.2.7 Probabilistic models ........................................................................................................................ 24 
2.2.8 Automatic Vehicle Identification (AVI) technology .......................................................................... 24 

2.3 MOBILE SENSOR BASED .............................................................................................................................. 25 
2.3.1 Minimum number of probes (How many vehicles need to serve as probes?) ................................. 25 
2.3.2 Bias in probe on signalized links ...................................................................................................... 28 
2.3.3 GPS based mobile sensors ............................................................................................................... 28 
2.3.4 Emerging mobile sensors: Cellular phones ...................................................................................... 28 
2.3.5 Transit vehicles as mobile sensors ................................................................................................... 29 
2.3.6 General issues with mobile sensors ................................................................................................. 30 

2.4 DATA FUSION BASED ................................................................................................................................. 31 
2.5 CRITICAL OVERVIEW .................................................................................................................................. 39 

3 METHODOLOGY DEVELOPMENT AND TESTING .................................................................................... 41 

3.1 BASIS FOR METHODOLOGY DEVELOPMENT ..................................................................................................... 41 



Development of urban network travel time estimation methodology 

 
xiv 

3.2 ISSUE: RELATIVE DEVIATION AMONGST CUMULATIVE PLOTS (RD) ....................................................................... 41 
3.2.1 Effect of mid-link sinks and sources on cumulative plots ................................................................ 41 
3.2.2 Detector counting error ................................................................................................................... 42 

3.3 CUPRITE DEVELOPMENT ........................................................................................................................... 43 
3.3.1 Probe vehicle data and cumulative plots ........................................................................................ 43 
3.3.2 Virtual probe ................................................................................................................................... 44 
3.3.3 CUPRITE architecture ...................................................................................................................... 46 
3.3.4 How to define the points from where U(t) should pass? ................................................................. 47 
3.3.5 How to redefine U(t)? ...................................................................................................................... 49 

3.4 ONLINE AND OFFLINE APPLICATION .............................................................................................................. 53 
3.5 CUPRITE TESTING.................................................................................................................................... 58 

3.5.1 Performance indicators ................................................................................................................... 58 
3.5.2 Framework for CUPRITE testing ...................................................................................................... 60 
3.5.3 Definition of sink and source percentage ........................................................................................ 63 
3.5.4 Single link testing ............................................................................................................................ 64 

3.6 CONCLUDING REMARKS ............................................................................................................................. 87 

4 DISCUSSIONS ON ROUTE TRAVEL TIME ESTIMATION ........................................................................... 89 

4.1 EXIT MOVEMENT SPECIFIC LINK TRAVEL TIME .................................................................................................. 89 
4.1.1 Significance ..................................................................................................................................... 89 
4.1.2 Issue................................................................................................................................................. 90 
4.1.3 Vertical scaling technique to define the upstream cumulative plot for each exit movement ......... 91 
4.1.4 Architecture for exit-movement specific link travel time ................................................................ 96 

4.2 ROUTE TRAVEL TIME .................................................................................................................................. 98 
4.2.1 CUPRITE for route travel time estimation ....................................................................................... 98 
4.2.2 CUPRITE testing for route travel time ........................................................................................... 102 

4.3 CONCLUDING REMARKS ........................................................................................................................... 111 

5 VALIDATION ON REAL DATA .............................................................................................................. 113 

5.1 FRAMEWORK ......................................................................................................................................... 113 
5.1.1 Validation methodology ................................................................................................................ 113 
5.1.2 Number plate survey ..................................................................................................................... 116 
5.1.3 Data cleansing ............................................................................................................................... 118 
5.1.4 CUPRITE application ...................................................................................................................... 121 
5.1.5 Ground truth travel time ............................................................................................................... 122 
5.1.6 Validation indicator ....................................................................................................................... 122 

5.2 SITE DESCRIPTION ................................................................................................................................... 124 
5.2.1 Leg 1: Route A→D ......................................................................................................................... 125 
5.2.2 Leg 2: Route D→I ........................................................................................................................... 128 
5.2.3 Leg 3: Route I→K ........................................................................................................................... 129 

5.3 VALIDATION RESULTS ............................................................................................................................... 130 
5.3.1 Case Leg 1: (A→D) ......................................................................................................................... 131 
5.3.2 Case Leg 2: (D→I) .......................................................................................................................... 135 
5.3.3 Case Leg 3: (I→K) ........................................................................................................................... 137 
5.3.4 Case RE Vs RC .................................................................................................................................. 139 
5.3.5 Case Sp ........................................................................................................................................... 141 

5.4 CONCLUDING REMARKS ........................................................................................................................... 144 

6 CONCLUSIONS ................................................................................................................................... 145 

6.1 RESEARCH CONTRIBUTIONS ....................................................................................................................... 145 
6.2 FUTURE RESEARCH DIRECTIONS .................................................................................................................. 146 

6.2.1 Travel time prediction ................................................................................................................... 147 
6.2.2 Integration with Public Transport Priority Systems ....................................................................... 147 
6.2.3 Feedback to signal control algorithm ............................................................................................ 147 

REFERENCES .............................................................................................................................................. 149 

APPENDIX A TRAFFIC INDUCTIVE LOOP DETECTORS .............................................................................. A-1 



Table of contents 

 
xv 

A.1 INDUCTIVE LOOP DETECTOR (ILD) ............................................................................................................... A-1 
A.1.1 Detector error ................................................................................................................................. A-1 

A.2 ADVANCED LOOP DETECTORS ..................................................................................................................... A-2 
A.3 DETECTOR LOCATION ON URBAN ENVIRONMENT ............................................................................................ A-2 

APPENDIX B AIMSUN ............................................................................................................................ B-1 

APPENDIX C RESULTS FROM CUPRITE TESTING ...................................................................................... C-1 

APPENDIX D VALIDATION RESULTS FOR ROUTE A→F ............................................................................. D-1 

D.1 EXTREME BASED ESTIMATION (A→F) .......................................................................................................... D-1 
D.2 COMPONENT BASED ESTIMATION (A→DLFT→F) ............................................................................................ D-3 

APPENDIX E EXTENDED RESULTS FOR ROUTE D →I ................................................................................ E-1 

E.1 RESULTS FOR ESTIMATION INTERVAL OF FIVE SIGNAL CYCLE ............................................................................... E-1 
E.2 COMPONENT BASED ESTIMATION (D→F→I) ................................................................................................ E-4 

APPENDIX F VALIDATION RESULTS FOR ROUTE D→K ............................................................................. F-1 

F.1 EXTREME BASED ESTIMATION (D→K) .......................................................................................................... F-1 
F.2 COMPONENT BASED ESTIMATION (D→F→I→K) .......................................................................................... F-3 

APPENDIX G VALIDATION RESULTS FOR ROUTE A→I ............................................................................. G-1 

G.1 EXTREME BASED ESTIMATION (A→I) ........................................................................................................... G-1 
G.2 COMPONENT BASED ESTIMATION (A→DLFT→F→I) ....................................................................................... G-3 

APPENDIX H CUPRITE APPLICATION FOR ESTIMATION OF QUARTILE OF TRAVEL TIME ........................... H-1 

H.1 SLICING TECHNIQUE ................................................................................................................................. H-1 
H.2 APPLICATION .......................................................................................................................................... H-3 





 

 
xvii 

List of  figures 

FIGURE 0-1: COMPARATIVE RESULTS FOR ACCURACY: VERSUS FIXED NUMBER OF PROBES PER ESTIMATION PERIOD FOR CUPRITE AND 

PROBE-ONLY METHOD. ........................................................................................................................................ IX 
FIGURE 0-2: STANDARD DEVIATION OF ACCURACY VERSUS NUMBER OF PROBES PER ESTIMATION INTERVAL. .................................. IX 
FIGURE 0-3: COMPARATIVE OVERVIEW OF ACCURACY (AM) FROM COMPONENT BASED AND EXTREME BASED VERSUS SN. ................. X 
FIGURE 0-4: RESULTS FOR A→DLFT WITH SN = 1. ............................................................................................................... XI 
FIGURE 0-5: RESULTS FOR A→DTHRU WITH SN = 2. ............................................................................................................ XII 
FIGURE 1-1: CUMULATIVE PLOT OBTAINED BY SMOOTHLY JOINING THE DISCRETE POINTS OF CUMULATIVE COUNTS VERSUS TIME. ...... 4 
FIGURE 1-2: CLASSICAL ANALYTICAL PROCEDURE FOR AVERAGE TRAVEL TIME ESTIMATION. ......................................................... 5 
FIGURE 1-3: SYSTEMATIC OVERVIEW OF THE CORE OF THIS DISSERTATION ............................................................................... 8 
FIGURE 2-1: RELATION BETWEEN NUMBER OF PROBES AND COEFFICIENT OF VARIATION FOR 95% AND 90% CONFIDENCE LEVEL AND 

10 % ERROR..................................................................................................................................................... 27 
FIGURE 3-1: ILLUSTRATION OF THE EFFECT OF MID-LINK SINK ON CLASSICAL ANALYTICAL PROCEDURE. ........................................ 42 
FIGURE 3-2: PROBE VEHICLE AND CUMULATIVE PLOTS. FIXING PROBE INFORMATION TO D(T). .................................................. 43 
FIGURE 3-3: RELATION BETWEEN PROBE DATA (VEHICLE SPACE-TIME TRAJECTORY) AND CUMULATIVE PLOTS FOR FIFO AND NON-FIFO 

SITUATION. ...................................................................................................................................................... 44 
FIGURE 3-4: ILLUSTRATION OF VIRTUAL PROBE, FIXED TO D(T) AT THE END OF SIGNAL GREEN PHASE. ......................................... 45 
FIGURE 3-5: CUPRITE BASIC ARCHITECTURE. ................................................................................................................. 47 
FIGURE 3-6: POINTS FROM WHERE U(T) SHOULD PASS. ..................................................................................................... 49 
FIGURE 3-7: REDEFINING U(T) BASED ON VERTICAL SCALING AND SHIFTING TECHNIQUE. .......................................................... 51 
FIGURE 3-8: CONCEPT OF VERTICAL SCALING AND SHIFTING TECHNIQUE. .............................................................................. 52 
FIGURE 3-9: EXAMPLE FOR DEFINING THE POINTS FROM WHERE THE U(T) SHOULD PASS FOR ONLINE APPLICATION: A) AT TIME T1; B) AT 

TIME T2. .......................................................................................................................................................... 55 
FIGURE 3-10: EXAMPLE FOR ONLINE AND OFFLINE APPLICATIONS. ....................................................................................... 57 
FIGURE 3-11: ARCHITECTURE FOR CUPRITE TESTING USING AIMSUN. .............................................................................. 58 
FIGURE 3-12: FRAMEWORK FOR CUPRITE TESTING. ........................................................................................................ 61 
FIGURE 3-13: DEFINITION OF PERCENTAGE LOSS TO MID-LINK SINK AND PERCENTAGE GAIN FROM MID-LINK SOURCE. .................... 64 
FIGURE 3-14: TEST BED FOR MODEL TESTING ON A SINGLE LINK BETWEEN TWO CONSECUTIVE SIGNALIZED INTERSECTIONS. ............. 65 
FIGURE 3-15: SIMULATION FOR DIFFERENT TRAFFIC FLOW CONDITIONS WITH NO REAL PROBE: A) FIFO NETWORK AND B) NON-FIFO 

NETWORK. (CASE A1). ....................................................................................................................................... 66 
FIGURE 3-16: COMPARATIVE RESULTS FOR 10% MID-LINK SINK CASE DURING UNDERSATURATED TRAFFIC CONDITION. (A) RESULTS 

FOR ACCURACY: A5 AND (B) RESULTS FOR ACCURACY: AM. ........................................................................................ 69 
FIGURE 3-17: COMPARATIVE RESULTS FOR 10% DOWNSTREAM DETECTOR OVERCOUNTING CASE DURING UNDERSATURATED TRAFFIC 

CONDITION. RESULTS FOR ACCURACY :(A) A5 AND (B) AM.......................................................................................... 70 
FIGURE 3-18: AN EXAMPLE FROM 10 % MID-LINK SINK CASE WITH DIFFERENT PROBE CONSIDERATION. ...................................... 71 
FIGURE 3-19: ACCURACY ESTIMATES (A5) FROM V+R CASE WITH SN= 1, 2 AND 3 PROBES VERSUS SN= 0 FROM 10% MID-LINK SINK 

(CASE A3.1). .................................................................................................................................................... 71 
FIGURE 3-20: CASE WITH 10% MID-LINK SINK (CASE A3.1): A) AND B) ARE FREQUENCY DISTRIBUTION OF THE ACCURACIES (A5) FOR 

DIFFERENT SCENARIOS WHERE ESTIMATES FROM ONLY VIRTUAL PROBES ARE BETTER THAN, CLOSE TO OR LESS THAN THOSE FROM 

VIRTUAL AND REAL PROBES. ................................................................................................................................. 72 
FIGURE 3-21: HCM 2000 DELAY VERSUS DEGREE OF SATURATION AT DOWNSTREAM INTERSECTION. ........................................ 73 
FIGURE 3-22: CASE B1 (10% SINK) OVERSATURATED TRAFFIC CONDITION FOR NON-FIFO DISCIPLINE. RESULTS FOR ACCURACY: A) A5 

AND B) AM VERSUS SN. ....................................................................................................................................... 75 
FIGURE 3-23: CUPRITE OFFLINE APPLICATION FOR DIFFERENT SINK PERCENTAGES (5%, 10%, 15% AND 20%); OVERSATURATED 

TRAFFIC CONDITION; NON-FIFO DISCIPLINE. RESULTS FOR ACCURACY: A) A5 AND B) AM VERSUS SN. .................................. 77 
FIGURE 3-24: CUPRITE ONLINE APPLICATION FOR DIFFERENT SINK PERCENTAGES (5%, 10%, 15% AND 20%); OVERSATURATED 

TRAFFIC CONDITION; NON-FIFO DISCIPLINE RESULTS FOR ACCURACY: A) A5 AND B) AM VERSUS SN. ................................... 78 
FIGURE 3-25: DETECTOR COUNTING ERROR WITH FIXED NUMBER OF PROBES PER ESTIMATION INTERVAL (SN) FOR OFFLINE 

APPLICATION: CASES B3. 1 TO B3.4: RESULTS FOR ACCURACY: A) A5 AND B) AM VERSUS SN. ........................................... 80 
FIGURE 3-26: SIMULTANEOUS PRESENCE OF BOTH SINK AND SOURCE. CASE B4.1 (20% SINK AND 10% SOURCE). RESULTS FOR 

ACCURACY: A) A5 AND B) AM VERSUS SN. ............................................................................................................... 82 



Development of urban network travel time estimation methodology 

 
xviii 

FIGURE 3-27: SIMULTANEOUS PRESENCE OF BOTH SINK AND SOURCE. CASE B4.3 (10% SINK AND 10% SOURCE). RESULTS FOR 

ACCURACY: A) A5 AND B) AM VERSUS SN. ............................................................................................................... 83 
FIGURE 3-28: STANDARD DEVIATION OF ACCURACY VERSUS NUMBER OF PROBES PER ESTIMATION INTERVAL. .............................. 84 
FIGURE 3-29: PERCENTAGE OF ESTIMATION INTERVALS WITH DIFFERENT NUMBER OF PROBES PER INTERVAL................................ 85 
FIGURE 3-30: 10% SINK CASE RESULTS FOR ACCURACY: A) A5 AND B) AM VERSUS SP. ............................................................. 86 
FIGURE 4-1: DIFFERENT TURNING MOVEMENTS ASSOCIATED WITH A LINK. ............................................................................ 89 
FIGURE 4-2: EXAMPLE FOR ACTUAL TRAVEL TIME FOR DIFFERENT EXIT MOVEMENTS ASSOCIATED WITH A LINK. ............................. 90 
FIGURE 4-3: EXAMPLE FOR TWO DIFFERENT DOWNSTREAM EXIT MOVEMENT COMBINATIONS BASED ON LINK GEOMETRY. .............. 91 
FIGURE 4-4: EXAMPLE OF A STUDY LINK WITH FLOW FROM THREE DIFFERENT DIRECTIONS AT UPSTREAM INTERSECTION AND EXIT FLOW 

TOWARDS THREE DIFFERENT MOVEMENTS AT DOWNSTREAM INTERSECTION. ................................................................. 93 
FIGURE 4-5: EXAMPLE FOR REAL TURNING RATIOS FOR THREE DIFFERENT DIRECTIONS FROM ONE OF THE LINK AT IKEGAMI SHINMACHI 

INTERSECTION, IN KAWASAKI CITY, JAPAN. ............................................................................................................. 94 
FIGURE 4-6: EXAMPLE OF THE METHODOLOGY FOR ESTIMATION OF UPSTREAM CUMULATIVE PLOT FOR EACH EXIT TURNING 

MOVEMENT. ..................................................................................................................................................... 96 
FIGURE 4-7: CUPRITE ARCHITECTURE FOR LINK-MOVEMENT SPECIFIC TRAVEL TIME ESTIMATION. ............................................. 97 
FIGURE 4-8: EXAMPLE FOR ROUTE TRAVEL TIME............................................................................................................... 98 
FIGURE 4-9: EXAMPLE FOR INSTANTANEOUS ROUTE TRAVEL TIME. .................................................................................... 100 
FIGURE 4-10: EXAMPLE FOR TIME-SLICE ROUTE TRAVEL TIME: COMPONENT BASED (RC). ....................................................... 101 
FIGURE 4-11: NETWORK FOR CUPRITE TESTING FOR ROUTE TRAVEL TIME ESTIMATION. ....................................................... 102 
FIGURE 4-12: FRAMEWORK FOR TESTING OF CUPRITE FOR ROUTE TRAVEL TIME ESTIMATION. ............................................... 103 
FIGURE 4-13: CASE STUDY M1.U, FLOW = F1, ACCURACY (A) AM AND (B) A5 VERSUS SN. .................................................... 105 
FIGURE 4-14: CASE STUDY M1.O, FLOW = F1, ACCURACY (A) AM AND (B) A5 VERSUS SN. .................................................... 106 
FIGURE 4-15: CASE F1 90% OF DEMAND GOES THROUGH THE ROUTE (EFFECTIVE 5% SINK). RESULTS FOR ACCURACY: (A) AM AND (C) 

A5 VERSUS SN. ................................................................................................................................................ 108 
FIGURE 4-16: CASE F2 50% OF DEMAND GOES THROUGH THE ROUTE (EFFECTIVE 10% SOURCE). RESULTS FOR ACCURACY: (A) AM 

AND (C) A5 VERSUS SN. ..................................................................................................................................... 109 
FIGURE 4-17: CASE F3 20% OF DEMAND GOES THROUGH THE ROUTE (EFFECTIVE 5% SINK). RESULTS FOR ACCURACY: (A) AM AND (C) 

A5 VERSUS SN. ................................................................................................................................................ 110 
FIGURE 5-1: LUCERNE, SWITZERLAND. ......................................................................................................................... 113 
FIGURE 5-2: FRAMEWORK FOR CUPRITE VALIDATION.................................................................................................... 115 
FIGURE 5-3: A SURVEY STATION. ................................................................................................................................ 116 
FIGURE 5-4: ILLUSTRATION OF CONTINUOUS VOICE RECORDING OF NUMBER PLATE SURVEY. ................................................... 117 
FIGURE 5-5: ILLUSTRATION OF THE PROCEDURE FOR DATA ENTRY INTO SPREADSHEET. ........................................................... 118 
FIGURE 5-6: EXAMPLE OF FILTERING THE OUTLIER USING BOX-AND-WHISKER PLOT. .............................................................. 119 
FIGURE 5-7: PULSE DATA REPRESENTATION FOR VS-PLUS DETECTOR DATA. ....................................................................... 120 
FIGURE 5-8: PULSE DATA REPRESENTATION FOR VS-PLUS SIGNAL DATA. ........................................................................... 121 
FIGURE 5-9: SYSTEMATIC REPRESENTATION OF THE SAMPLE OF VEHICLES CAPTURED FROM THE POPULATION; AND CONFIDENCE IN THE 

ESTIMATE OF POPULATION FROM THAT OF THE SAMPLE. .......................................................................................... 122 
FIGURE 5-10: SYSTEMATIC REPRESENTATION OF THE RESULTS FOR CUPRITE VALIDATION. .................................................... 123 
FIGURE 5-11: NUMBER PLATE SURVEY STATIONS. .......................................................................................................... 125 
FIGURE 5-12: ILLUSTRATION OF THE LINK CHARACTERISTICS BETWEEN INTERSECTIONS A AND D. ............................................. 126 
FIGURE 5-13: TURNING PROPORTIONS FOR DIFFERENT DIRECTIONS FROM C TO D. ............................................................... 128 
FIGURE 5-14: ILLUSTRATION OF THE LINK CHARACTERISTICS BETWEEN D TO I. ..................................................................... 129 
FIGURE 5-15: ILLUSTRATION OF THE LINK CHARACTERISTICS BETWEEN INTERSECTIONS I AND K AND CORRESPONDING DETECTOR 

COUNT. ......................................................................................................................................................... 130 
FIGURE 5-16: RESULTS FOR A→DLFT WITH SN = 1. ......................................................................................................... 132 
FIGURE 5-17: RESULTS FOR A→DLFT WITH SN = 2. ......................................................................................................... 133 
FIGURE 5-18: RESULTS FOR A→DLFT WITH SN = 3. ......................................................................................................... 133 
FIGURE 5-19: RESULTS FOR A→DTHRU WITH SN = 1. ....................................................................................................... 134 
FIGURE 5-20: RESULTS FOR A→DTHRU WITH SN = 2. ....................................................................................................... 134 
FIGURE 5-21: RESULTS FOR A→DTHRU WITH SN = 3. ....................................................................................................... 135 
FIGURE 5-22: RESULTS FOR D→I WITH SN = 1. ............................................................................................................. 136 
FIGURE 5-23: RESULTS FOR D→I WITH SN = 2. ............................................................................................................. 136 
FIGURE 5-24: RESULTS FOR D→I WITH SN = 3. ............................................................................................................. 137 
FIGURE 5-25: RESULTS FOR I→K WITH SN = 1. .............................................................................................................. 138 
FIGURE 5-26: RESULTS FOR I→K WITH SN = 2. .............................................................................................................. 138 
FIGURE 5-27: RESULTS FOR I→K WITH SN = 3. .............................................................................................................. 139 



List of figures 

 
xix 

FIGURE 5-28: RESULTS OF EXTREME BASED AND COMPONENT BASED TRAVEL TIME ESTIMATION FOR DIFFERENT ROUTES WITH SN = 1.
 .................................................................................................................................................................... 140 

FIGURE 5-29: RESULTS OF EXTREME BASED AND COMPONENT BASED TRAVEL TIME ESTIMATION FOR DIFFERENT ROUTES WITH SN = 2.
 .................................................................................................................................................................... 140 

FIGURE 5-30: RESULTS OF EXTREME BASED AND COMPONENT BASED TRAVEL TIME ESTIMATION FOR DIFFERENT ROUTES WITH SN = 3.
 .................................................................................................................................................................... 141 

FIGURE 5-31: RESULTS FOR A→DLFT WITH SP=1%. ........................................................................................................ 142 
FIGURE 5-32: RESULTS FOR A→DLFT WITH SP=2%. ........................................................................................................ 142 
FIGURE 5-33: RESULTS FOR A→DLFT WITH SP=3%. ........................................................................................................ 143 
FIGURE 5-34: PERCENTAGE OF ESTIMATION INTERVALS VERSUS SN FOR ROUTE A→DLFT. ........................................................ 143 
FIGURE C-1: COMPARATIVE RESULTS FOR 10% MID-LINK SOURCE DURING UNDERSATURATED TRAFFIC CONDITION. RESULTS FOR 

ACCURACY: (A) A5 AND (B) AM VERSUS SN. ............................................................................................................ C-2 
FIGURE C-2: COMPARATIVE RESULTS FOR 10% UPSTREAM DETECTOR OVERCOUNTING DURING UNDERSATURATED TRAFFIC CONDITION. 

RESULTS FOR ACCURACY: (A) A5 AND (B) AM VERSUS SN. .......................................................................................... C-3 
FIGURE C-3: COMPARATIVE RESULTS FOR 10% UPSTREAM DETECTOR UNDERCOUNTING CASE DURING UNDERSATURATED TRAFFIC 

CONDITION. RESULTS FOR ACCURACY: (A) A5 AND (B) AM VERSUS SN. ......................................................................... C-4 
FIGURE C-4: COMPARATIVE RESULTS FOR 10% DOWNSTREAM DETECTOR UNDERCOUNTING CASE DURING UNDERSATURATED TRAFFIC 

CONDITION. RESULTS FOR ACCURACY: (A) A5 AND (B) AM VERSUS SN. ......................................................................... C-5 
FIGURE C-5: CASE B1 (10% SINK) OVERSATURATED TRAFFIC CONDITION FOR FIFO DISCIPLINE. RESULTS FOR ACCURACY: (A) A5 AND 

(B) AM VERSUS SN. ............................................................................................................................................ C-6 
FIGURE C-6: CUPRITE OFFLINE APPLICATION FOR DIFFERENT SOURCE PERCENTAGES (5%, 10%, 15% AND 20%); OVERSATURATED 

TRAFFIC CONDITION; NON-FIFO DISCIPLINE. RESULTS FOR ACCURACY: (A) A5 AND (B) AM VERSUS SN. .............................. C-7 
FIGURE C-7: CUPRITE ONLINE APPLICATION FOR DIFFERENT SOURCE PERCENTAGES (5%, 10%, 15% AND 20%); OVERSATURATED 

TRAFFIC CONDITION; NON-FIFO DISCIPLINE. RESULTS FOR ACCURACY: (A) A5 AND (B) AM VERSUS SN. .............................. C-8 
FIGURE C-8: DETECTOR COUNTING ERROR WITH FIXED NUMBER OF PROBES PER ESTIMATION INTERVAL (SN) FOR ONLINE APPLICATION: 

CASE B3. 1 TO B3.4: (A) A5 AND (B) AM VERSUS SN. .............................................................................................. C-9 
FIGURE C-9: RELIABILITY OF THE ESTIMATE FOR CASE STUDY (B3.1 TO B3.4) ON DETECTOR COUNTING ERROR WITH FIXED NUMBER OF 

PROBES PER ESTIMATION INTERVAL (SN) FOR A) OFFLINE APPLICATION AND B) ONLINE APPLICATION. .............................. C-10 
FIGURE C-10: SIMULTANEOUS PRESENCE OF BOTH SINK AND SOURCE. CASE B4.2 (10% SINK AND 20% SOURCE): (A) A5 AND (B) AM 

VERSUS SN. .................................................................................................................................................... C-11 
FIGURE C-11: RESULTS FOR ACCURACY VERSUS SP CASE B3.1 TO CASE B3.4 FROM CUPRITE OFFLINE APPLICATION. ................. C-12 
FIGURE C-12: RESULTS FOR ACCURACY VERSUS SP CASE B3.1 TO CASE B3.4 FROM CUPRITE ONLINE APPLICATION. ................. C-13 
FIGURE C-13: SIMULTANEOUS PRESENCE OF BOTH SINK AND SOURCE. CASE B4.3 (10% SINK AND 10% SOURCE): (A) A5 AND (B) AM 

VERSUS SN. .................................................................................................................................................... C-14 
FIGURE C-14: SIMULTANEOUS PRESENCE OF BOTH SINK AND SOURCE. CASE B4.4 (20% SINK AND 20% SOURCE): (A) A5 AND (B) AM 

VERSUS SN. .................................................................................................................................................... C-15 
FIGURE C-15: SIMULTANEOUS PRESENCE OF BOTH SINK AND SOURCE. CASE B4.5 (50% SINK AND 50% SOURCE): (A) A5 AND (B) AM 

VERSUS SN. .................................................................................................................................................... C-16 
FIGURE C-16: SIMULTANEOUS PRESENCE OF BOTH SINK AND SOURCE. CASE B4.6 (90% SINK AND 90% SOURCE): (A) A5 AND (B) AM 

VERSUS SN. .................................................................................................................................................... C-17 
FIGURE C-17: SIMULTANEOUS PRESENCE OF SINK, SOURCE AND DETECTOR COUNTING ERROR. CASE B4.7 (10% SINK; 10% SOURCE; 

BOTH U/S AND D/S DETECTORS UNDERCOUNTING BY 10%): (A) A5 AND (B) AM VERSUS SN. .......................................... C-18 
FIGURE C-18: RESULTS FOR CASE B4.8 (10% SINK; 10% SOURCE; BOTH U/S AND D/S DETECTORS OVERCOUNTING BY 10%): (A) A5 

AND (B) AM VERSUS SN. ................................................................................................................................... C-19 
FIGURE D-1: EXTREME BASED RESULTS FOR A→F (SN=1). ................................................................................................ D-1 
FIGURE D-2: EXTREME BASED RESULTS FOR A→F (SN=2). ................................................................................................ D-2 
FIGURE D-3: EXTREME BASED RESULTS FOR A→F (SN=3). ................................................................................................ D-2 
FIGURE D-4: COMPONENT BASED RESULTS FOR A→DLFT→F (SN=1). .................................................................................. D-3 
FIGURE D-5: COMPONENT BASED RESULTS FOR A→DLFT→F (SN=2). .................................................................................. D-3 
FIGURE D-6: COMPONENT BASED RESULTS FOR A→DLFT→F (SN=3). .................................................................................. D-4 
FIGURE E-1: NUMBER OF SURVEY VEHICLES IN ESTIMATION INTERVAL OF 5 TIMES THE SIGNAL CYCLE. ........................................ E-1 
FIGURE E-2: EXTREME BASED RESULTS FOR D→I (SN=1). ................................................................................................. E-2 
FIGURE E-3: EXTREME BASED RESULTS FOR D→I (SN=2). ................................................................................................. E-2 
FIGURE E-4: EXTREME BASED RESULTS FOR D→I (SN=3). ................................................................................................. E-3 
FIGURE E-5: COMPONENT BASED RESULTS FOR D→F→I (SN=1). ....................................................................................... E-4 
FIGURE E-6: COMPONENT BASED RESULTS FOR D→F→I (SN=2). ....................................................................................... E-4 
FIGURE E-7: COMPONENT BASED RESULTS FOR D→F→I (SN=3). ....................................................................................... E-5 



Development of urban network travel time estimation methodology 

 
xx 

FIGURE F-1: EXTREME BASED RESULTS FOR D→K (SN=1). ................................................................................................ F-1 
FIGURE F-2: EXTREME BASED RESULTS FOR D→K (SN=2). ................................................................................................ F-2 
FIGURE F-3: EXTREME BASED RESULTS FOR D→K (SN=3). ................................................................................................ F-2 
FIGURE F-4: COMPONENT BASED RESULTS FOR D→F→I→K (SN=1). ................................................................................. F-3 
FIGURE F-5: COMPONENT BASED RESULTS FOR D→F→I→K (SN=2). ................................................................................. F-3 
FIGURE F-6: COMPONENT BASED RESULTS FOR D→F→I→K (SN=3). ................................................................................. F-4 
FIGURE G-1: EXTREME BASED RESULTS FOR A→I (SN=1). ................................................................................................. G-1 
FIGURE G-2: EXTREME BASED RESULTS FOR A→I (SN=2). ................................................................................................. G-2 
FIGURE G-3: EXTREME BASED RESULTS FOR A→I (SN=3). ................................................................................................. G-2 
FIGURE G-4: COMPONENT BASED RESULTS FOR A→DLFT→F→I (SN=1). ............................................................................. G-3 
FIGURE G-5: COMPONENT BASED RESULTS FOR A→DLFT→F→I (SN=2). ............................................................................. G-3 
FIGURE G-6: COMPONENT BASED RESULTS FOR A→DLFT→F→I (SN=3). ............................................................................. G-4 
FIGURE H-1: ILLUSTRATION FOR SLICING THE AREA BETWEEN CUMULATIVE PLOTS FOR DEFINING TRAVEL TIME FOR DIFFERENT PAIR OF 

VEHICLES WITHIN A ESTIMATION INTERVAL. ............................................................................................................ H-2 
FIGURE H-2: AN EXAMPLE FOR QUARTILE ESTIMATION USING SLICING METHOD. .................................................................... H-3 
FIGURE H-3: Q3 ESTIMATION USING CUPRITE FOR ROUTE FROM A→DLFT (SN=1). ............................................................... H-4 
FIGURE H-4: Q3 ESTIMATION USING CUPRITE FOR ROUTE FROM A→DLFT (SN=2). ............................................................... H-5 
FIGURE H-5: Q3 ESTIMATION USING CUPRITE FOR ROUTE FROM A→DLFT (SN=3). ............................................................... H-5 



 

 
xxi 

List of  tables 

TABLE 2-1: CRITICAL OVERVIEW OF THE LITERATURE ......................................................................................................... 34 
TABLE 3-1: DIFFERENT CASES CONSIDERED FOR CUPRITE TESTING FOR UNDERSATURATED TRAFFIC FLOW CONDITIONS (↑: DETECTOR 

OVERCOUNTING; ↓: DETECTOR UNDERCOUNTING) .................................................................................................. 62 
TABLE 3-2: DIFFERENT CASES CONSIDERED FOR CUPRITE TESTING DURING OVERSATURATED TRAFFIC CONDITION (↑: DETECTOR 

OVERCOUNTING; ↓: DETECTOR UNDERCOUNTING) .................................................................................................. 63 
TABLE 5-1: DETECTOR COUNTS BETWEEN INTERSECTIONS A AND B ................................................................................... 127 
TABLE 5-2: DETECTOR COUNTS FOR LEFT ENTRANCE LINK OF INTERSECTION A ...................................................................... 127 
TABLE 5-3: DETECTOR COUNTS FROM DETECTORS BETWEEN INTERSECTIONS C AND D ........................................................... 127 
TABLE 5-4: DETECTOR COUNTS FOR INTERSECTIONS D TO I (LEG 2) ................................................................................... 129 
TABLE 5-5: DIFFERENT CASES FOR CUPRITE VALIDATION ................................................................................................ 131 





 

 
xxiii 

List of  abbreviations and symbols 

Following are the common used abbreviations and symbols throughout the thesis. Abbreviations 

specific to a chapter are provided as a separate list in the chapter, if required.  

Abbreviation Meaning 

AM Accuracy obtained from Mean Absolute Percentage Error. Equation (3.17).  

A5 Accuracy obtained from 95
th

 percentile of error. Equation (3.19).  

ANPR Automatic Number Plate Recognition. 

AVI Automatic Vehicle Identification. 

C Signal cycle time. 

CP Cumulative plot. 

CUPRITE CUmulative plots and PRobe Integration for Travel timE estimation. 

d/s Downstream exit of the study link. Here, entrance of the downstream intersection. 

D(t) Cumulative plot at d/s location. Also the counts corresponding to time t.  

FIFO First-In-First-Out. 

g Signal effective green time. 

ITS Intelligent Transportation Systems. 

MAPE Mean Absolute Percentage Error. 

RC Component based path travel time. 

RD Relative deviation amongst the cumulative plots. 

RE Extreme based path travel time. 

s Saturation flow rate. (Also used for seconds, unit of measure). 

Sn Fixed number of probes per estimation interval. 

Sp Fixed percentage of probes per estimation interval. 

TEI Travel time estimation interval. 

td Time when probe vehicle is at d/s location. 

tD Time when a vehicle is represented in D(t). 



Development of urban network travel time estimation methodology 

 
xxiv 

Abbreviation Meaning 

[td] List of td values from different probe vehicles. 

tff Free-flow travel time from u/s to d/s. 

tGE Time corresponding to end of effective signal green phase. 

tRS Time corresponding to start of effective signal red phase. 

tu Time when probe vehicle is at u/s location. 

tU Time when a vehicle is represented in U(t). 

[tu] List of tu values from different probe vehicles. 

tα/2,n t-statistics with α level of significance and n degrees of freedom.  

u/s Upstream entrance of the study link. Here, entrance of the upstream intersection. 

U(t) Cumulative plot at u/s location. Also the counts corresponding to time t.  

X Degree of saturation at downstream intersection. 

Abbreviation Unit of measure 

cm centimeter 

ft feet 

h hour 

kHz kilohertz 

Km Kilometer 

m meter 

mi mile 

mi/h miles per hour 

min minute 

pcu passenger car unit 

pcu/h passenger car unit per hour 

s seconds (Also used for saturation flow rate) 

s/km seconds per kilometer 

veh vehicle 

veh/s vehicle per second 



List of abbreviations and symbols 

 
xxv 

Abbreviation Meaning 

veh/km vehicle per kilometer 

Symbol Meaning 

µC Mean of the population estimates from CUPRITE application. 

µs Mean of the population estimates from survey data. 

Equation Chapter 1 Section 1





 

 
1 

1 Introduction 

This chapter introduces the problem addressed in this research followed by research objectives and 

significance. Finally, the outline of the report is provided.  

1.1 Background 

Travelling is an inevitable part of life either due to spatially separated activities or for other social, 

economic and behavioral reasons. With economic and population growth there is an increase in 

demand for travel and vehicle ownership. The supply (capacity of transportation infrastructure and 

modes) of infrastructure and transportation system is limited and the increase in supply does not match 

with increase in demand. This is one of the reasons for traffic congestion. Traffic congestion is an 

inevitable condition in almost all major cities. The increase in congestion on the road network results 

in: 

i. Economic loss: In Europe, the external social economic cost of congestion is estimated 

to be around 2% of GDP [1], which amounts to annual social loss of more than 120 

billion Euros. 

ii. Environmental impact: Congestion results in stop-and-go running conditions, which 

not only increases energy consumption but also causes more air and noise pollution. 

iii. Adverse physiological, psychological and social effects. 

It is almost impossible to eliminate peak period congestion. However, the problem can be reduced by 

efficient and intelligent traffic management. For instance, Intelligent Transportation Systems (ITS) 

where network performance information is automatically gathered, managed, and relayed through a 

network of transportation facilities such as roadways and terminals. 

Travel time is defined as the time needed to travel from one point to another on the network. Travel 

time information quantifies the performance of the network and is generally considered as the most 

important performance measure in transportation studies. Excess travel time (delay) leads to indirect 

costs to the drivers in terms of lost time, discomfort and frustration and a direct cost in terms of fuel 

consumption during idling. Excessive delay reflects inefficiency in the system performance. Travel 

time information is easy to perceive by the road users and has the potential to reduce congestion on 

both temporal and spatial scale. Reducing congestion maximizes the efficiency and capacity of the 

network, providing smooth traffic flow which in turn reduces vehicle emissions and energy 

consumption.  

Different techniques are applied to estimate travel time on the traffic networks. These techniques 

depend on the type of the traffic data retrieval system, that vary from traditional inductive loop 

detectors to advance vehicle tracking equipments such as GPS and mobile phone carried by driver. 

The state-of-the-art for travel time estimation techniques is provided in Chapter 2. 

Traffic data obtained from detectors provide information for the point where detectors are installed 

(point measure). Whereas, probe vehicle data, provides information for the behavior of the probe 

vehicle on the network. The traffic information obtained from a point measure should be carefully 

utilized to estimate the spatial behavior of traffic. Similarly, the information obtained from a probe 

vehicle should be carefully utilized to estimate the behavior of all the vehicles traversing.  
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In this report, vehicle equipped with vehicle tracking equipments is termed as probe vehicle. Probe 

data in addition to detector and traffic signal data at different locations on the network are multisource 

data utilized for travel time estimation.  

1.2 Research motivation  

The primary use of the detectors at most of the signalized arterials is for signal control. More and more 

vehicles are equipped with position tracking equipments and such vehicles can be used as probe 

vehicles. For instance, GPS equipped taxis where the data is used for fleet management. If the data 

from these multisources (detector and signal controller at different locations on the network and probe 

vehicle) is also used for accurate travel time estimation and feed back to the traffic management 

system then it would be a significant contribution to better urban traffic control and management.  

In Switzerland, generally most of the intersections have stop-line inductive loop detectors, i.e., 

detectors just before or after the stop-line at the intersection (Detectors after the stop-line are generally 

installed to check the red light violation.). These detectors are 1.5 ~ 2 m in length and are capable of 

providing vehicle counts. The methodology in this research is developed based on stop-line detectors 

and is able to incorporate data from detectors at different locations. A short description of detector 

layout in urban networks is provided in Appendix A .  

1.3 Problem statement 

Most of the researches on travel time estimation are limited to freeways and researchers have applied 

different methodologies ranging from simple statistical modeling to sophisticated artificial 

intelligence. Traffic flows on freeways are treated as uninterrupted traffic flow where flow conditions 

are primarily the result of internal friction i.e., interactions among the vehicles and interactions 

between the vehicle and infrastructure. There are no external causes of interruption (such as, traffic 

signals) to the continuous movement of vehicles. On freeways, the spot-speed at the detector location 

can be easily correlated to the travel time of the section from (few hundred meters) upstream to 

downstream of the detector location. There is no significant variation of the travel time between two 

consecutive vehicles. Hence, few probe vehicles can be a good representation of all the vehicles 

traversing the link. However, travel time estimation is more challenging on urban facilities as 

explained in the following subsection (1.3.1).  

1.3.1 Complexities with urban network 

Interruptions in flow due to conflicting areas: On urban networks external control such as, traffic 

signals, yield signs and stop signs are needed to ensure safety at conflicting areas (intersections). The 

flow thus not only depends on internal friction but also on the external factors resulting in interrupted 

traffic flow. Vehicles are at stop-and-go running conditions and the delays experienced at the 

intersections are significant part of the travel time on the urban link. Hence, the spot-speed from a 

detector cannot be correlated to travel time on a link between intersections. In addition to the delays at 

the intersections, vehicles are also prone to mid-link delays due to a number of reasons such as, 

pedestrians, vehicles entering from side-streets, on-street bus stops etc. 

There can be significant variation in travel time between two consecutive vehicles depending on the 

time when the vehicle arrives at an intersection. For instance, if the leading vehicle arrives during 

signal green phase and the following vehicle arrives during signal red phase then the following vehicle 

has to stop at intersection resulting in significantly higher travel time. Therefore, average travel time 

estimation solely based on probe data requires significantly large number of probes per estimation 

interval.  
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Significant proportion of flow to/from mid-link sinks/sources: The proportion of such flows is 

dynamic and varies with time of the day and day of the week. Generally, detectors are not installed on 

mid-link sinks/sources. Practically, the loss/gain of flow to/from a mid-link sink/source is unknown. 

Models solely based on detector data only capture the flow at the detector location and its performance 

can significantly deteriorate in the presence of significant flow to/from mid-link sinks/sources. Also, 

the performance is affected by the errors in detector counting.  

Average link travel time may not be representative of travel time for different exit movements: 

An urban link is associated with different exit turning movements for instance, travel time for through, 

left and right movements. Average travel time on the link may not be a true representative of the travel 

time for different movements. For ITS applications (such as route guidance) one is more interested in 

movement specific travel time than average link travel time. For movement specific travel time we 

need to know the demand for each movement and it is more complicated to estimate than average 

travel time on the whole link.  

1.4 Research goal and objectives 

The main goal of this research is to develop a methodology that should address the problem discussed 

in the previous section.  

The first objective of this research is to develop a methodology for movement specific travel time 

estimation on urban signalized networks utilizing the multisource data.  

The second objective is to test the methodology under controlled environment. The performance of 

the methodology is to be evaluated through simulation of different scenarios. 

The third objective is to validate the methodology with real data from a typical urban network with 

mid-link sources and sinks etc. Validation with field data is necessary to justify the potential of the 

methodology for implementation on real transport network. 

1.5 Research scope 

The methodology developed in this research is to estimate average travel time during certain travel 

time estimation interval. For instance, average travel time for five signal control cycles. It should not 

be confused with ―Individual vehicle travel time‖ or ―Short-term travel time prediction‖. Individual 

vehicle travel time on signalized urban networks is random and is subjected to the time when the 

vehicle arrives at the intersection. Short-term travel time prediction is the prediction of future travel 

time. In literature, time series modeling tools such as AutoRegressive Integrated Moving Average 

(ARIMA), are utilized for travel time prediction. Such models require an input of time series of 

experienced travel time. The performance of such models highly depends on the quality of the input. 

The estimates of travel time from this research should be a valuable input for such models. 

1.6 Classical analytical procedure for travel time 

estimation 

The methodology developed in this research is based on classical analytical procedure of estimating 

travel time using cumulative plots. This section introduces the procedure and discusses the issues 

related to application of cumulative plots for travel time estimation on urban networks. 
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1.6.1 Cumulative plot 

Cumulative plot (Figure 1-1) is graph of a function that defines the cumulative number of values 

(counts of vehicles passing an observer) at time t, starting from an arbitrary initial count, e.g., at t=0. 

Cumulative plots are used as a tool in number of engineering applications such as ―mass curve 

analysis‖ in hydraulic engineering. In traffic engineering, Newell [2] is pioneer to use cumulative plots 

for dynamic analysis of deterministic congested systems. 

Suppose at a specific location on the road there is an observer or a detector which detects the time 

when the vehicle is at the location, then accumulating vehicles vertically in the order of their detection 

time provides the discrete points of cumulative vehicle counts versus time (see Figure 1-1). Discrete 

points are obtained because vehicles are discrete. These discrete points can be joined smoothly by 

considering fluid approximation to the vehicle flow and the defined curve is the cumulative plot. 

Cumulative plot is monotonically increasing and can be assumed to be differential with respect to 

time. The slope of the plot at time t is the instantaneous traffic flow at time t. The value of the 

cumulative counts at time t is CP(t). For time t and t+∆t, the difference in the corresponding 

cumulative counts (CP(t + ∆t) - CP(t)) gives traffic counts during time interval ∆t. The average flow 

during the time interval is the ratio of counts and time interval i.e., (CP(t + ∆t) - CP(t))/ ∆t .  
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Figure 1-1: Cumulative plot obtained by smoothly joining the discrete points of cumulative 
counts versus time. 

1.6.2 Travel time estimation using cumulative plots 

Refer to Figure 1-2, two cumulative plots U(t) and D(t) are obtained at locations upstream (u/s) and 

downstream (d/s) of a road, respectively. Assuming: a) First-In-First-Out (FIFO) discipline is 

respected for all vehicles traversing from u/s to d/s (i.e., there is no vehicle overtaking); and b) the 

vehicles are conserved (i.e., there is no loss or gain of vehicles between u/s and d/s). The vertical 

distance (along Y-axis) between the two plots at time t defines the instantaneous number of vehicles 

(n) between the two locations. The horizontal distance (along X-axis) for count i define the travel time 

(tti) for the ith vehicle. The classical analytical principle for average travel time estimation defines total 

travel time for all the N vehicles departing during travel time estimation interval (TEI) (from the 

location d/s) as the area (A) between the two cumulative plots. Average travel time per vehicle is the 

ratio: A/N. Interested readers can refer to Page 1-24 of Newell [2] and Chapter 2 of Daganzo [3] for 

complementary reading.  
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Figure 1-2: Classical analytical procedure for average travel time estimation.  

Note: even if FIFO discipline is not respected, the area (A) between the two plots represents the total 

travel time as long as all the vehicles which arrive at upstream during time t1 and t2 actually depart at 

downstream during time t3 and t4, and vice versa. Here t1 and t2 are time corresponding to the start and 

end of U(t) represented in the area, respectively; and similarly t3 and t4 are time corresponding to the 

start and end of D(t) represented in the area, respectively. 

Equation (1.1) represents the mathematical expression for average travel time,TT , where D-1(i) and U-

1(i) is the time corresponding to the ith cumulative count observed at D(t) and U(t), respectively.  

 

1 1 1 1

1 1 1
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N N N
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TT
N N
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 (1.1) 

1.6.3 Issue for application of  classical analytical procedure on 

urban network 

For the application of the above mentioned classical procedure, not only cumulative plots should be 

accurately estimated but also there should not be relative deviation amongst the plots. The ideal 

situation is when detectors are perfect (i.e., they provide accurate vehicle by vehicle information) and 

vehicles are conserved between the upstream and downstream locations. However, these conditions 

are difficult to obtain in practice, especially in urban networks due to reasons mentioned below: 

i. Detector Error: Loop detectors even under normal running conditions have counting 

error of around 5%. However, for cumulative plot these errors are also cumulative and 

can result in exponential relative deviation amongst the plots.  
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ii. Mid-link sources and sinks such as, parking, mid-link street, residential and 

commercial areas etc., violate the requirement for conservation of vehicles between the 

two locations where cumulative plots are defined. 

iii. Unknown cumulative plots for different link movements: An urban link can have 

complex combinations of flow to and from a link. For instance, shared use lane at 

upstream link with unknown real turning proportions can complex the process of 

estimating cumulative plot at upstream location. Moreover, for exit movement specific 

travel time, the unknown cumulative plot for each exit movement is also to be 

estimated.  

For detailed discussion of the above issues with an example refer to Section 3.2 and Section 4.1.2. 

Based on the above mentioned classical analytical procedure, in this research analytical modeling is 

performed by integrating cumulative plots with probe vehicle data. The methodology developed in this 

report is named as CUmulative plots and PRobe Integration for Travel timE estimation (CUPRITE1). 

1.7 Scientific relevance 

The key contributions of this research to the scientific community can be summarized as follows:  

i. Methodology for real-time average travel time estimation on signalized urban 

networks: The methodology is thoroughly tested for different traffic conditions and 

validated with the real data. 

ii. Consideration of mid-link sinks and sources, and detector counting error: Most of the 

in-practice models overlook the flow to/from mid-link sinks/sources and also the effect 

of detector counting error. This research develops a methodology which is robust with 

respect to mid-link sinks and sources, and detector counting error.  

iii. Exit movement specific travel time estimation: This research provides travel time for 

different exit movements on the link, and also for a route. Existing models are 

applicable for average link travel time which on urban networks can be significantly 

different from travel time on different exit movements associated with the link. 

iv. Integration of probe information for better accuracy and reliability: Most of the 

existing models either consider probe data or detector counts. This research integrates 

both the data and the issues (such as, detector counting error and low number of probe 

samples) related with individual data are resolved.  

1.8 Practical relevance 

The practical applications of this research can be summarized as follows: 

i. Performance evaluation of the system and Level Of Service (LOS) of the intersection: 

Excess travel time is an important network performance measure. It is the criteria for 

the estimation of LOS of the intersection. Network-wide performance evaluation 

provides information to the traffic operators to identify critical junctions in the network 

for which traffic management and strategic measures can be applied to increase the 

efficiency of the network. This research can be applied to estimate the network wide 

performance of the system and LOS of different intersections. 

                                                      
1 Pronunciation: kyü-prīt.  

In literature, cuprite is a red mineral consisting of copper oxide (Cu2O) and is a minor ore of copper. It is also 

one of the rarest and most sought of collector's gems. http://en.wikipedia.org/wiki/Cuprite 

http://en.wikipedia.org/wiki/Cuprite
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ii. ITS applications: The travel time estimates from this research can be used for 

Intelligent Transportation Systems (ITS) applications such as, Advanced Traveler 

Information System (ATIS). The real-time travel time information can be provided to 

the users through internet and other mediums. The information has the potential for 

spatial and temporal dispersion of congestion. 

iii. Feedback to signal controller to optimize its parameters: Most of the adaptive traffic 

signal control algorithms optimize its parameters based on objective functions defined 

in terms of ―key parameters‖ such as, delay and number of stops at intersections for 

SCOOTS [4] and Degree of Saturation (DS) value for SCATS [5]. Travel time 

estimates from this research can act as a feedback to the controller to optimize its 

parameters and hence increase the effectiveness of the control algorithm. Moreover, 

CAREEN2 [6], an adaptive control algorithm developed by University of Tokyo, Japan, 

generates signal control parameters (green split, cycle time, offset) by minimizing total 

delay at the intersection obtained from cumulative plots. Similarly, CUPRITE‘s 

cumulative plots could be used to adjust the signal timings to minimize delay. 

iv. Short-term travel time prediction: Historical time series of travel time is a necessary 

input for any prediction algorithm (such as ARIMA). Integrating CUPRITE with such 

prediction algorithms should provide better predictions for short-term travel time.  

v. Public Transport Priority Systems (PTPS): Public transport priority systems give 

priority to the public transport (PT) (such as public buses) at signalized intersections. 

PTPS require priority strategies for PT vehicles so that they pass the signalized 

intersection without stopping at the intersections, i.e., provide green time to the PT 

vehicle when it reaches the intersection. For this, its arrival time at intersection is 

predicted well in advance when it is still at up-stream of the intersection. Therefore, the 

efficiency of such system is sensitive to the accuracy of the prediction of travel time. 

Errors in travel time prediction can lead the PT vehicle to miss the priority provided to 

them. CUPRITE has the potential to accurately estimate travel time and can be easily 

integrated with PTPS for better efficiency and reliability. 

1.9 Outline of  the report 

Figure 1-3 illustrates an overview of the core of this report. Chapter 2 provides the state-of-the-art 

travel time estimation methodologies for both freeway and urban facilities. In Chapter 3 the proposed 

methodology, CUPRITE, is developed. The chapter concludes by presenting the results of its thorough 

testing under controlled environment. Discussions on the application of CUPRITE for exit movement 

specific link travel time and route travel time are provided in Chapter 4. And the results of its 

validation with field data are provided in Chapter 5. Finally, the main contributions of this research 

and recommendations for future research are summarized in Chapter 6. 

  

                                                      
2 Field demonstration of CAREEN, during ITS World Congress 2004, Nagoya, Japan, was performed and 

CAREEN was compared with in-practice fixed time control signal. According to the comparison, on average 

there were 20% reduction in travel time of main stream and 5-10% of most of other streams [6] M. Asano, 

"Adaptive Traffic Signal Control Using Real-Time Delay Measurement," in Department of Civil Engineering, 

Faculty of Engineers Tokyo, Japan: University of Tokyo, 2004, p. 67. 
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Figure 1-3: Systematic overview of the core of this dissertation 

Equation Chapter (Next) Section 1 



 

 
9 

2 Travel time estimation: A literature 

review 

Travel time estimation has been an active area of research since 1950‘s. The goal of this chapter is to 

review and compare the latest developments in the travel time estimation methodologies for both 

urban and freeway facilities. The review is organized in chronological order, except for few instances 

where the order is altered for continuity of discussion.  

2.1 Travel time estimation techniques 

The traffic data retrieval systems can be broadly categorized into two categories: fixed sensors; and 

mobile sensors. Fixed sensors, such as inductive loop detectors provide traffic information at the 

specific location on the network whereas, mobile sensors such as probe vehicle provide data for the 

entire journey of the vehicle. 

Based on the type of data available different techniques are applied to estimate average travel time for 

all the vehicles traversing the road. Moreover, the availability of data from different systems provide 

avenue for application of data fusion techniques for more reliable and robust travel time estimation. 

Therefore, this chapter classifies different travel time estimation models as follows:  

i. Fixed sensor based; 

ii. Mobile sensor based; and  

iii. Data fusion based.  

2.2 Fixed sensor based 

Fixed sensors, such as inductive loop detectors, ultrasonic detectors, microwave detectors etc. are 

installed at a fixed location and hence can provide continuous temporal traffic characteristics only at a 

fixed point and not the spatial behavior of traffic. Literature is abundant with models ranging from 

naïve regression to advanced neural networks to relate detector data to travel time estimates. 

Here, the models based on fixed sensor data are categorized into: 

i. Regression based (Section 2.2.1); 

ii. Queueing theory based (Section 2.2.2); 

iii. Traffic flow theory based (Section 2.2.3); 

iv. Pattern recognition based (Section 2.2.4); 

v. Time series analysis (Section 2.2.5); 

vi. Neural Networks based (Section 2.2.6); 

vii. Probabilistic models (Section 2.2.7); and 

viii. Automatic Vehicle Identification (AVI) technology (Section 2.2.8). 
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2.2.1 Regression based 

Wardrop [7] had defined regression equation (2.1) for average journey speed (v, unit: mi/h) in central 

urban areas as a function of: average traffic flow (q, unit: pcu/h); width of carriageway (w, unit: ft); 

number of controlled intersections per miles (f); and average proportion of effective green time (λ). He 

found that journey speed is inversely proportions to number of signalized intersections per unit 

distance. And for a given number of intersections, the speed is largely defined by the traffic intensity3. 

 
1 1

140
31 0.0244 1000 6.8

f

q qv

w w w

 (2.1) 

Gault [8] has defined following two models based on simulated data to estimate travel time from 

detectors at signalized arterial. The optimum detector location for both the models is reported to be 40 

m upstream of the stop-line. 

i. Arrival Time model: is extension of Gipps [9] work that predicts a vehicle travel time 

(T) as a function of the time when the vehicle arrives at the detector and the detector 

occupancy just prior to the departure of the vehicle (2.2). This model often 

underestimates travel time and could not be applied for situation where average 

occupancy was higher than 50%.  

 
1.6

(1 ) ( ( )T a rt C G lag g K  (2.2) 

Where:  

a, g and K are regression coefficients defined in terms of linear combination 

of: free flow travel time of the link (Termed as undelayed link travel time by 

Gault.); degree of saturation for the approach to the traffic stream; and offset 

between the upstream and downstream signals; 

rt is the register time (in seconds) that is defined so that, on average, 

undelayed vehicle which pass over the detector at register time zero just reach 

the stop-line as the signal turn red; 

G and C are signal green time and cycle time, respectively; 

δ= 0 if rt ≤ R else δ= 1; R is signal red time; and  

Lag is the average time for an undelayed vehicle to travel from the detector to 

the stop-line. 

ii. Occupancy model or British model: defines a linear regression relationship (2.3) 

between average detector occupancy (O) and link average travel time (tavg). The linear 

relationship is applicable only for occupancy less than 70%.  

 avg
t aO b  (2.3) 

Where: a and b are regression coefficients defined in terms of linear combination of: 

free flow travel time of the link; degree of saturation for the approach to the traffic 

stream; and ratio of signal green split at upstream and downstream intersections.  

Gault has evaluated the performance of the above models using simulated data and 20 min detector 

aggregation period. It was found that Occupancy model performs slightly better than the Arrival Time 

model. Gault has also emphasized on the importance of using the correct value of desired speed (Free 

flow travel time depends on the desired speed.) for the models application.  

                                                      
3 Traffic intensity is defined as ratio of flow to carriageway width (unit: pcu/h/ft) 
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Young [10] also observed a linear relationship between average delay per vehicle and average 

occupancy per vehicle per detector for a signalized junction. The relationship is valid only if the 

detectors are far upstream of the stop-line and queue clears the detector during the green phase. He did 

not provide any calibrated model but emphasized on the role of detector layout for the applicability of 

the above linear relationship.  

Sisiopiku and Rouphail [11] have provided a review of models for travel time estimation based on 

detector data. The paper can be a good complementary reading for review of the detector output based 

models introduced before year 1993.  

Sisiopiku et al., [12] have analyzed the relationship between through-movement link travel time and 

detector flow and occupancy (average for 15 min). They found that:  

i. Travel time is independent of both flow and occupancy under low traffic demand;  

ii. Percentage occupancy is a better predictor of link travel time than traffic flow; and  

iii. Travel time is linearly related to occupancy in the range of 17% to 60%, 

approximately. For occupancy below 17% travel time is independent of occupancy 

values and for occupancies above 60% conclusion cannot be drawn as real data was not 

available. 

They conclude that for a mid-link detector, with queue that does not persist over a detector location, a 

regression relationship can be fitted for certain ranges of occupancies to obtain link travel time.  

Sisiopiku and Rouphail [13] have also defined a simple travel time (t) estimation model, Illinois model 

(2.4), as a linear combination of free-flow travel time (tf) and delay. The delay (2.4) is expressed in 

terms of: ratio of the distance between the detector setback from the stop-line to link length (dl); 

detector occupancy (O); and green split (g).  

 f
t t delay  (2.4) 

 0 1 2 3
delay dl O g  (2.5) 

Where: βo, β1 and β2 are regression coefficient.  

Zhang [14] has proposed a journey-speed ( c
u ) model (2.6), named Iowa model, as a linear 

combination of two speed estimated: a) average speed ( /V C
u ) (2.7) from non linear regression of 

critical volume to capacity (V/C) ratio; and b) average speed (
/q O

u ) (2.8) from loop detector flow (q) 

and occupancy (O) measurements. 

 
/ /

(1 )
c V C q O

u u u  (2.6) 

Where 0 ≤ γ ≤ 1; γ = 0 for congested traffic and γ = 1 for light traffic.  
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Where: 0.379 is a constant converting occupancy to density;  

α and β are calibration parameter; and 

uf is free flow speed.   

Zhang has calibrated Iowa model with real data and has compared it with British model (2.3) and 

Illinois model (2.4). All the three models perform well at low speed. At high speed Iowa model 
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2
 

performs better than the other two, though British model performs better than Illinois model. It was 

also found that none of the three models performs well during transition traffic state. 

Xie et al., [15] have provided a model, named Singapore model, to estimate average speed for a link 

defined from upstream intersection down to 40 m to 50 m from the downstream intersection. The 

model simply considers travel time (2.9) as a linear combination of cruise time and delay. Cruise time 

(2.10) is the ratio of the link length (L1) and maximum of the speed (udet) obtained from the detectors 

at the upstream and downstream of the link. Note that the link is not between two intersections; it 

starts from the upstream intersection and ends 40 m ~ 50 m (=L2) upstream of the downstream 

intersection.  

 Travel time Cruise time Signal Delay  (2.9) 

 1

det

L
C ruise tim e

u
 (2.10) 

Delay is defined as a function of Webster deterministic delay equation (For Webster delay model refer 

to equation (2.14).). Webster delay equation is the total delay near the stop-line of intersection. The 

delay defined in equation (2.11) is the proportion of total delay in the link of interest. 
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Where: C and G are downstream intersection signal cycle length and green time, respectively; 

x is degree of saturation at downstream intersection; and 

q is flow measured at upstream intersection. 

Xie et al., have compared Singapore model with British (2.3), Iowa (2.6) and Illinois (2.4) models. 

Their results indicates that the performance of all the four models is more or less the same (RMSE < 

±5 km/h) under moderate to congested traffic conditions. They argue that Singapore model has 

slightly better accuracy than that of the British and Iowa models and is slightly lower than the Illinois 

model. However, being calibration-free, their model is simple for practical implementation. 

Rice and Van Zwet [16] have observed a linear relationship between future travel time and current 

status travel time using the real data from Los Angeles freeway. The slope and Y-intercept of this 

relationship may change subject to time of the day and time until departure, but linearity persists. 

Based on this observation they have defined a linear regression model with time varying coefficients 

(TVC) for travel time estimation on freeways. Zhang and Rice [17] have observed that the quality of 

the training data set used to estimate TVC have significant impacts on the prediction accuracy.  

Comments: Regression relationship developed for mid-link detector should not be applied for 

stop-line detectors. Similarly, the regression relationship obtained for through exit movement is not 

necessary valid for other exit movements. For an effective regression model, effect of parameters such 

as detector location, effective green time, progression quality, link length, opposing flow for 

permissive phasing, traffic composition etc. should not be overlooked. The model calibrated for a 

specific condition should not be generalized without further testing and calibration. Generally 

regression models are site specific and their transferability is limited. Moreover, if regression models 
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parameters are calibrated with simulated data, then it is necessary that simulation model4 should be 

properly calibrated with field observations.  

2.2.2 Queueing theory based 

Queueing theory is a tool to analyze congested systems. Most of the mathematical queueing theory 

models are developed for steady-state but stochastic (random) systems. However, real queues are 

dynamic for instance, congestion during peak period and researchers have developed analytical 

models capable of considering dynamic variations in arrival and service rates. Here, the queueing 

theory models are differentiated into:  

i. Static models that average steady-state stochastic traffic situation; and  

ii. Dynamic models that consider change in traffic situations over time. These models are 

analytical deterministic models and are more appropriate for real time applications. 

2.2.2.1 Static models 

2.2.2.1.1 Volume-delay functions  

Initial motivation for travel time estimation models were their application in considering congestion 

effects in conventional traffic assignment step used in four-step transportation planning methods. 

Travel time functions (also known as speed/flow curves; congestion functions or volume-delay 

functions) such as: Bureau of Public Roads (2.12) [18]; Davidson‘s function (2.13); modified 

Davidson‘s function [19, 20]; conical-volume delay functions [21]; and Akcelik function [22] etc. are 

based on developing relationship between travel time (or cost) on a road link and traffic intensity 

(flow/capacity ratio).  

 (1 ( ) )
ff

q
TT t

c
 (2.12) 

Where: TT , tff , q and c are average travel time, free-flow travel time, flow and capacity for the link, 

respectively;  

α and β are calibration parameters. 

 
0

(1 ( ))
1

D

X
t t J

X
 (2.13) 

Where: t = average travel time per unit distance (s/km); 

to = free-flow travel time per unit distance (s/km); 

JD = a delay parameter (or 1 – JD = a quality of service parameter); 

x = q / c = degree of saturation; 

q = demand (arrival) flow rate (in veh/h); and  

c = capacity (in veh/h). 

Webster delay model (2.14) [23] is the earliest and most famous model for estimating average 

deterministic delay at undersaturated signalized intersection. It estimates average intersection delay 

                                                      
4 Simulation model is a controlled environment and has the potential to provide rich quantity of data for different 

traffic conditions and patterns but the simulation results are sensitive to the simulation model calibration 

parameters. Field observations are from an uncontrolled environment and it is real world conditions.  
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per vehicle as a function of signal parameters (cycle length, green split), demand (arrival flow rate) 

and supply (capacity).  
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Where: D is average delay per vehicle;  

Dij and qij is the average delay and arrival flow rate, respectively for signal phase i and traffic 

stream j;  

gi and ui is the green time and green split for signal phase i; 

c is the signal cycle length; and 

 sj is the saturation flow rate for traffic stream j.  

Webster delay model was developed using traffic simulation on a single lane approach to a signalized 

intersection. The model has three terms: a) the first one corresponds to the average delay per vehicle 

under uniform arrival (deterministic delay); b) the second term attributes to the probability that sudden 

fluctuations in vehicle arrival may temporary cause oversaturation at the intersection; and c) the last 

part is the adjustment factor to account for the correction for the curve fitting to the simulated average 

delay per vehicle due to the traffic signals. 

Webster delay model is the basis of all the subsequent delay models as many researchers such as, 

Akçelik [24-26] and Highway Capacity Manual [27, 28] follow Webster‘s work and proposed delay 

models to suit different field conditions. For instance, vehicle arrival in platoon is considered by 

Akçelik and Rouphail [26] by extension of deterministic delay models to consider the effect of 

platoon. 

Comments: The simplicity of these function make them favorable candidate for transport planning and 

policy analysis where the analysis is done using average demand within a period (e.g., an hour). The 

variability of traffic demands within a given control period is not fully considered. These models are 

not suited for ITS applications where more accurate and reliable analysis for shorter period, of order of 

signal cycle time, in real time is required. 

2.2.2.1.2 Japanese Sand-glass model & Delay-time model 

Takaba et al., [29] have developed following two models: sand-glass model; and delay-time model.  

 Sand-glass model 

Sand-glass model is based on the analogy of vehicle on the link with sand in the glass. Vehicle in the 

queue is considered similar to sand level in the glass and discharge rate at critical intersection is 

considered similar to down flow rate at the bottom of the glass. Travel time is defined by equation 

(2.15). 

 
( )

q q

ff

N L L
TT

Q v
  (2.15) 

Where: TT is the travel time; 

Nq and Lq are number of vehicles in the queue and queue length, respectively; 

L and vff are the length and free-flow speed of the link, respectively; and 
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Q is the link capacity (discharge flow volume).  

Takaba et al. [29] have defined a procedure for estimating number of vehicles in the queue. For this 

density (k) is defined as inverse of average spacing (2.16): 

 
q

q

N
k

L
 (2.16) 

 Density is approximated as linear function of flow (Q) as: 

 
j

k k aQ  (2.17) 

Where kj is the jam density and a is regression coefficient.  

Equation (2.15) is rewritten by substituting equations (2.16) and (2.17) as follows: 

 
( )

j q q
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ff

k L L L
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 (2.18) 

The model (2.15) requires estimation of queue length (Lq) and number of vehicles in the queue (Nq) 

which is practically difficult to obtain. The procedure (equations (2.16) and (2.17)) suggested by 

Takaba et al. for estimating number of vehicles in the queue requires regressive regression on link 

capacity and density parameters.  

 Delay-time model 

Delay-time model defines travel time (TT) in the congested section as the sum of delay time (D) and 

running time (F). Delay time is defined by equation (2.19) and running time by equation (2.20). 
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Where: d is the delay time per signal cycle; 

 m is the number of cycles while vehicles runs through the congested section;  

C, G and s are signal cycle time, effective green time, and saturation flow rate, respectively; 

Q is the link capacity (discharge flow volume).  

Lq is queue length; 

L is link length;  
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v is running speed; and 

TT is travel time on the link 

The first two terms in the equation (2.21) is the average travel time in congested section and last term 

is average travel time in uncongested section.  

Comments: The sand-glass (2.18) and delay-time model (2.21) are the same when the regression 

coefficient a for sand-glass model is equal to (kj*s – 1/v). 

Though the above two models are simple to understand, but the required parameters are difficult to 

obtain and requires extensive calibration for reasonable accuracy. Once calibrated, the models can be 

applied for transportation planning application. However, the stochastic variations in the parameters 

make them unfavorable for real time application.  

2.2.2.2 Dynamic models 

2.2.2.2.1 TRANSYT and SCOOT models 

TRAffic Network StudY Tool (TRANSYT) and Split, Cycle and Offset Optimisation Technique 

(SCOOT) are developed by Transport Research Laboratory, UK for signal control optimisation. 

TRANSYT is for offline optimisation of fixed time coordinated traffic signal timings. SCOOT, 

evolved from TRANSYT, is for online optimisation and is able to adapt signal parameters considering 

the real time traffic flow parameters. 

The basic optimisation model is same in both the tools. The objective function is to minimize network 

performance index expressed in terms of weighted links average queues (delay) and number of 

vehicles stops.  

Robertson and Bretherton [30] have explained the TRANSYT and SCOOT models. The models 

consider cycle flow profiles (CPF) at the upstream entrance of the SCOOT/TRANSYT link. CPF 

defines the demand for the link and is the average vehicle flow during each part of the cycle time of 

the upstream signal (1 s to 5 s for TRANSYT and 4 s for SCOOT.). This average flow in each part of 

the cycle is average of many cycles (e.g., peak hour in TRANSYT and is fixed to 4 s in SCOOT.). The 

growth and clearance of the queue (delay) is analytically estimated by considering CPF, link cruise 

speed, platoon dispersion, saturation flow rate and signal timings at downstream intersection. 

Comments: The models can be considered as identical to the classical analytical procedure of using 

cumulative plots described in Section 1.6.2. CPF is obtained by the detectors installed at the upstream 

entrance of the link. The performance of the model for travel time estimation with respect to the 

detector counting error and mid-link sources and sinks is not documented in the literature.  

The objective of TRANSYT and SCOOT is to optimize signal parameters by considering total 

network delay and not to estimate accurate travel time (delay) for each link. Carden et al., [31] have 

analyzed the SCOOT model accuracy through a case study on 17 links at Southampton, UK. They 

found that on average SCOOT delay estimates were within 5% of measured delay, though a large 

variability (50% coefficient of variation) in the measured delay between cycles were observed. The 

error in the SCOOT delay estimate was also variable with an average standard deviation of 80% of the 

measured delay. Further studies confirm that SCOOT overestimates delay in congested periods.  

2.2.2.2.2 Highway Capacity Manual 2000 delay model 

Highway Capacity Manual 2000 (HCM 2000) provides average control delay (2.22)experienced by all 

vehicles that arrive in the analysis period, including delays incurred beyond the analysis period when 

the lane group is oversaturated. 



2 Travel time estimation: A literature review 

 
17 

 1 2 3
( )d d PF d d  (2.22) 

 

2

1

0.5 (1 )

1 m in(1, )

g
C

C
d

g
X

C

 (2.23) 

 
2

2

8
900 ( 1) ( 1)

kIX
d T X X

cT
 (2.24) 

 
3

1800 (1 )
b

Q u t
d

cT
 (2.25) 

Where: 

d = average control delay per vehicle (s/veh) that arrive during the analysis period. This 

includes movements at slower speeds and stops on intersection approaches as vehicles 

move up in queue position or slow down upstream of an intersection; 

d1 = uniform control delay assuming uniform arrival (s/veh) (2.23); 

PF = uniform delay progression adjustment factor. This accounts for effects of signal 

progression. (Refer to equation (2.26), where P is proportion of vehicles arriving during 

green phase, fPA is supplemental adjustment factor for platoon arriving during green 

phase; 

 
(1 )

1

PA
P f
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g

C

 (2.26) 

d2 = incremental delay to account for effect of stochastic arrivals and oversaturation queues. 

This is adjusted for duration of analysis period and type of signal control. This delay 

component assumes that there is no initial queue for lane group at start of analysis period 

(s/veh) (2.24); 

d3 = initial queue delay, which accounts for delay to all vehicles in analysis period due to 

initial queue at start of analysis period (s/veh) (2.25); 

C = signal cycle time; 

g = signal green time for the lane group;  

c = lane capacity (veh/h); 

T = duration of analysis period (hour); 

X = lane group flow by capacity ratio (v/c) or degree of saturation; 

k, I = incremental delay calibration factors that are dependent on controller settings. k is a 

coefficient that accounts for randomness is arrivals (0 < k < 0.5). If variance of the arrival 

rate equals the mean arrival rate then k equals 0.5; 

I is a coefficient that accounts for the metering effect of the upstream signals. If there is 

no metering effect then I equal unity. I is given by equation (2.27) 

 
2.68
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u u

u

I X if X
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 (2.27) 

Where Xu is the degree of saturation at upstream intersection and is approximated as v/c 

ratio of upstream through movement. 
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Qb = initial queue at start of period T (vehicle); 

t = duration of unmet demand in T (hour); 

u = delay parameter. 

Comments: The HCM delay formula is well used delay formula is literature and can be applied for 

real time application, given that one can obtain the parameters defined above. Practically it is difficult 

to obtain the parameters such as Qb and t in real time. 

2.2.3 Traffic flow theory based 

Lighthill, Whitham and Richards (LWR) [32, 33] have developed macroscopic hydrodynamic traffic 

flow theory using the analogy between traffic flow and fluid flow. They derived kinematic waves that 

satisfy first order partial differential equation which is also termed as principle of conservation of 

vehicles (2.28).  

 
( , ) ( , )

0 ( )
q x t k x t

or traffic generation rate
x t

 (2.28) 

Where: q(x,t) and k(x,t) is traffic flow (veh/h) and density (veh/km), respectively at location x at time t. 

In practice, the model (2.28) is discretised in time and space, by considering time steps of Δt and 

dividing the freeway in sections of length Δx. For numerical stability of solutions equation (2.29) 

should be satisfied for all sections in network. 

    x v t  (2.29) 

Where: v is the speed in the section. 

2.2.3.1.1 Nam and Drew model 

Nam and Drew [34] have developed analytical model for travel time estimation on freeways link. The 

link is defined between two detector locations and without any mid-link on-ramp or off-ramp. The 

model considers cumulative plots (from detector at upstream and downstream of the link) and 

principle of conservation of vehicles (between the two detector locations). Cumulative plots, at the 

location of the detector take into account the stochastic variations in the flow for real time application. 

The principle of conservation of vehicles (2.28) derives the flow-density-speed relationship as the rate 

of change of flow over distance is equal to the rate of change of density over time (2.30).  

If the vehicles are conserved then, difference between the cumulative counts at two locations at time t 

defines number of the vehicles traversing the link at time t. The density (k) is the ratio of number of 

vehicles in the link and link length. Total travel time from upstream to downstream is the area between 

the cumulative plots at upstream and downstream. Nam and Drew have considered average flow at 

upstream and downstream. Hence, they have assumed trapezoidal area between the plots. This area is 

represented as a function of flow and density and is used to derive the equation (2.31) for average 

speed.  
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Where: q(x,t) is the flow at location x at time t;  
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k(t) is the density at time t;  

∆t are time interval when the first vehicle have entered the upstream and last vehicle have 

departed from downstream (The flow (q) is defined as the counts during ∆t time interval);  

∆x is the distance between the two locations; 

 xu and xd are the upstream and downstream detector station, respectively; 

u(tn) is the speed at time interval tn; and 

Q(x,t) are cumulative counts at location x at time t. 

Comments: Nam and Drew [34] have validated the model on real data (From Queen Elizabeth Way in 

Toronto, Canada.) where performance of the model is evaluated by comparing it with true travel 

speed. They have documented RMSE to be close to 10%. They have assumed the true travel speed as 

the average of the speed obtained from upstream and downstream detectors. The way they have 

estimated the true travel speed is only valid when there is no congestion, or when traffic queue is half 

way between upstream and downstream of the link. The performance evaluation of the model does not 

differentiate between congested and non congested traffic condition. The performance evaluation of 

the model with better knowledge of true speed such as use of AVI data etc. should provide concrete 

model validation. 

The basis of the equation (2.31) is the difference of cumulative counts at upstream and downstream of 

the links which in turn are sensitive to relative deviation amongst cumulative plots. Even in the 

absence of on-ramp and off-ramp there are chances of relative deviation due to detector counting error 

and for real application of the model detector counting error issue is to be resolved. Nam and Drew 

[34] have found that the upstream counts were 3% higher than downstream counts. To account for this 

difference they have applied volume adjustment factor for each half hour and flow measurements at 

downstream location were multiplied by the volume adjustment factor. The explanation of how the 

volume adjustment factors are determined was not documented.   

The model is limited to confined link of freeway (absence of on-ramp and off-ramp) under FIFO 

queueing discipline and cannot be applied as it is on urban networks due the following reasons: 

i. Principle of conservation of vehicle is generally not valid on urban network due to 

mid-link sources and sinks etc. 

ii. Due to traffic signals the flow is interrupted and equation (2.31) is not applicable. 

Equation (2.31) is derived considering trapezoidal shape between the two cumulative 

plots (For data aggregation interval (∆t) to be more than the free flow travel time of the 

link.). On urban network the shape of the cumulative plot highly depends on the 

location of the detector from the stop-line and stop-and-go running conditions at the 

trapezoidal shape is no longer valid.  

2.2.3.1.2 Oh et al. model 

Oh et al., [35] have applied LWR hydrodynamic traffic flow theory to define travel time on a freeway 

section (2.32) as a function of section density (k, (2.33)) and flow at upstream and downstream of the 

section. The density and flow are estimated based on the counts from the detectors at each entrance 

and exit of the section.  

 1
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Where: Δx is the length of the freeway section; 
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tts is section density based travel time; 

qu, qd are flow at upstream and downstream of the section, respectively; 

l is the number of lanes on the freeway section; 

qon, qoff, lon, loff, are flow and number of lanes for on ramp and off ramp, respectively; 

α is the calibration parameter to take into account the systematic errors in detector counting.  

Total vehicles inflow and outflow to the section should be identical for a larger period (Say six hours, 

from a free flow (at 2 p.m.) to next free flow traffic condition (8 p.m.).). α is obtained as the ratio of 

total cumulative inflow and cumulative outflow for a longer period as: 
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t

lq t l q t

lq t l q t
 (2.34) 

The initial section-density is defined for homogeneous (Indicated by approximately equal values of 

occupancy at upstream and downstream detectors.) and uncongested traffic condition (Indicated by 

approximately free flow speed at upstream and downstream detectors.). Density is the function of 

average vehicle length and occupancy of the detector. 

Comments: The model is applicable only for freeway sections between two detectors and it requires 

detectors on every on ramp and off ramp. The correction for the detector counting error (α, (2.34)) 

assumes that the error is consistent (systematic) for a large period. However, practically the counting 

error is not consistent for instance, detectors have tendency to undercounts when vehicles are closely 

spaced. Hence, the estimation of section density during small estimation intervals (say each 5 min) is 

not correct resulting in error in section travel time estimate.  

2.2.4 Pattern recognition based 

Traffic flow parameters such as speed, occupancy and flow on spatial and temporal scale can define 

traffic pattern. Different techniques such as k-Nearest neighbor (k-NN) and cross-correlation are 

applied to match traffic patterns for travel time estimation. 

2.2.4.1 k-Nearest Neighbor (k-NN) 

The k-nearest neighbor, a non-parametric regression, technique is amongst the simplest of all 

machine-learning algorithms. In pattern recognition, the method identifies objects based on closest 

training example in the feature space. The basic idea behind the technique is if, historical observations 

of input and output variables are available then, matching the current set of input variables with 

historical database can provide a set of k historical observations that are similar to the current input. 

The current output can be then defined as a function of the values from the obtained set of k historical 

observations.  

For travel time estimation, the technique is applied based on the assumption that traffic scenarios 

similar to the present traffic condition may have occurred before. Therefore, the present traffic pattern 

is compared with the historical database and k closet matching patterns (k-NN) are identified.  

You and Kim [36] have applied k-NN technique for travel time forecasting. Their model is based on 

segregating the original non-linear time series of travel time data into local linear trends. Thereafter, 

k-NN technique is applied to identify similar past cases compared with the slope of the present case.  

Bajwa et al., [37] have applied the technique on ultrasonic detector traffic data from Tokyo 

Metropolitan Expressway (MEX). They have identified traffic pattern as a function of distance 

weighted inverse speed obtained from the detectors. Nearest neighbor are obtained by minimizing the 

squared difference between the prediction time traffic pattern and historical traffic patterns in the 
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database. The predicted travel time is defined as the average travel time of the k-nearest neighbor 

obtained. They have also applied genetic algorithm to optimize the parameters, such as the value of k 

and weights for traffic pattern [38] . 

Comments: For pattern matching, the current pattern is compared with historical patterns having same 

day-type and time-type. Thus, any rare incident such as off-peak breakdown may not be captured. It is 

also assumed that the speed obtained from the detector is conserved along the whole section length. 

The assumption is valid only if the length of the section is small, and quantity of this assumption 

decreased during congestion dissipation and buildup. The model is tested on MEX where detectors are 

at 300 m spacing and performance of the model for longer detector spacing is not evaluated. 

The above model is applicable on freeways. Robinson and Polak [39] has applied k-NN technique on 

15 min aggregated flow and occupancy from inductive loop detector data from central London 

SCOOT system. The database is developed based on the Automatic Number Plate Recognition 

(ANPR) cameras in the site. They have identified the pattern as a function of weighted flow and 

occupancy obtained from the detectors. Nearest neighbor is obtained by minimizing the square of the 

prediction time traffic pattern with historical pattern. Finally, the predicted travel time is defined as 

median of the k-nearest neighbor obtained. The MAPE from the testing of the model at Russell square 

in central London is reported at around 20%. They have also report that “the model performed well at 

low and very high levels of actual travel time”.  

Comments: The basic requirement for the application of k-NN technique is to build historical database 

of the travel time and the parameters for the traffic pattern over the link. The performance of k-NN 

highly depends on the selection of its parameters in addition to the quantity and quality of the 

historical database. The attributes of the traffic patterns (input variables) can be easily stored from the 

sensors, though it may not be accurate. However, a methodology should be defined to obtain the travel 

time (output variable) to be stored in the historical database. The errors in the stored travel time values 

are reflected in the prediction. Robinson and Polak [39] have tested the k-NN technique on the link 

where accurate travel time are obtained from ANPR, and traffic patterns are defined by the loop 

detectors. For potential application of the model, they have identified the use of GPS probe vehicle to 

define the historical database i.e., the travel time obtained from GPS vehicles to be stored with 

corresponding flow and occupancy reading from the detector. Probably the proposed potential 

application is satisfactory for freeways, but for urban environment, significantly larger number of 

probe vehicles per estimation interval is required as the travel time for each probe highly depends on 

its delay at intersection and it may not be a representative of the flow of vehicles during the estimation 

interval. Moreover, Robinson and Polak have defined flow as an attribute for traffic pattern whereas, 

Bajwa et al., [37] has identified that for travel time prediction, flow may not be a good variable for 

pattern recognition. This is because for a given flow there are two values of speed, one corresponding 

to free flow and another to congested traffic region.  

2.2.4.2 Cross-correlation technique 

Cross-correlation is the technique to measure the similarity between two waveforms as a function of 

time lag applied to one of them. For travel time estimation, the technique has been applied to data 

from traffic detector at upstream and downstream of the link. 

Dailey [40] has applied the cross-correlation technique to estimate average vehicle travel time between 

widely separated inductive (single) loops detectors on freeways. The flow at downstream is defined as 

a linear combination of: a) flow at upstream multiplied by a dispersion factor; b) change in flow due to 

on-ramp and off-ramp; and c) noise in the data. The cross-correlation is applied to the time series of 

traffic flow fluctuations about the average flow. Dailey observed that the technique provides reliable 

results only if there is sufficient correlation between the flows at upstream and downstream stations, 

i.e., correlation coefficient greater than or equal to 0.4. The criterion is not met for occupancy greater 

than 15%.  

Comments: The model is only for freeways and cannot be applied for urban networks. As mentioned 

by the Dailey [40] “the cross-correlation technique modeled the traffic as fluctuations about a mean 
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that propagated rigidly over the distance between the loops. This assumption of rigid propagation will 

be violated in high-occupancy or stop-and-go traffic.” 

Petty et al., [41] proposed a model based on platoon matching. They assume that for a given time 

interval, travel time of different vehicles on a freeway link is from same probability distribution. They 

estimate the probability distribution, and in particular its mode, from least-square regression on 

cumulative upstream and downstream arrival processes. For this they had define the flow at 

downstream detector at time td as the flow at upstream detector at time tu times the probability that the 

travel time is td – tu. They have shown that their model gives comparable results as that of Dailey [40]. 

Comments: The model is applicable only for freeway section where platoon can exist i.e., absence of 

on-ramp and off-ramp. This platoon machining technique is unlikely to work in urban environment 

where the signals can induce significant fluctuations in the flow.  

2.2.4.3 Vehicle reidentification 

Vehicle reidentification technique matches a vehicle signature at upstream station and downstream 

station of a link and thereafter travel time is directly deduced from the difference of arrival time at two 

stations.  

The data from conventional Inductive loop detectors (ILD) is a pulse data (i.e., data value is either ―1‖ 

or ―0‖ depending on the vehicle presence.). The length of a vehicle can be deduced from the pulse 

data, specifically from dual loop ILDs. ILD works on the principle of change in inductance due to 

presence of a vehicle. Advance ILD can provide the time series of changes in inductance, termed as 

inductance waveform. In literature, the following two indicators for vehicle signature are considered: 

i. Vehicle length obtained from conventional ILD; and  

ii. Inductance waveform from advance ILD.  

2.2.4.3.1 Vehicle length as an indicator  

Researchers [42-46] have applied vehicle reidentification technique considering vehicle length as an 

indicator for vehicle signature for travel time estimation on freeways. For short length vehicle such as 

passenger cars, the difference in vehicle lengths is small and hence many false positive matches are 

possible. The confidence in the match is higher if vehicles with long length such as heavy vehicles are 

considered. Coifman and Krishnamurthy [46] have proposed a method to estimate the length of the 

vehicle by both dual loop and signal loop detector given that detector provides accurate pulse type data 

and for dual loop pulse data is available from both the loops.  

Coifman [42] matches individual heavy vehicle length within a search window define in terms of 

lower and upper bound for expected free flow travel time. The algorithm reidentifies vehicles only 

during free flow traffic condition, the reidentification ceases once traffic condition is congested and 

hence it acts as an indicator for free flow and congested traffic condition. For congested traffic 

condition Coifman and Cassidy [44] considers platoon of 5-10 vehicles to match sequence of vehicle 

lengths for vehicle reidentification. For this, platoon should pass both upstream and downstream 

detectors in the same lane. The platoon is likely to be lost for longer link lengths with lane changing, 

merging and diverging traffic behavior. Coifman and Krishnamurthy [46] have extended the above 

models to allow vehicle reidentification even when vehicle changes lanes.  

Comments: They have not reported the performance of their model in terms of standard statistical 

indicator such as MAPE. The model depends on the accuracy of the range for vehicle length 

estimated, which in turn depends on the detector accuracy. The model is developed and is tested for 

freeway. The application of the model for urban network is complicated due to following:  

For a given vehicle length at downstream, there are different potential candidates at upstream. Model 

identifies travel time by assigning more weights to preceding vehicles with similar travel time (for 
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details refer to [46]). On freeways, travel time from one vehicle to another during a given time frame 

does not varies significantly whereas, on urban network the travel time can significantly vary 

depending its delay at intersection. Moreover, the reidentification is considered for heavy vehicles 

which are relatively low on urban network.   

2.2.4.3.2 Inductance waveform as an indicator 

The shape of the inductance waveform depends on various factors (such as the length of the vehicle, 

speed of the vehicle, the amount of metal in the vehicle, distribution of the metal in the vehicle, height 

of the vehicle body from the road surface etc.). The inductance waveform has the potential to provide 

considerable amount of information about the vehicle. hence it has attracted the attention of 

researchers for number of applications such as estimating vehicle speed from single loop detector [47]; 

vehicle classification [48]; and vehicle reidentification [49]. 

Sun and Ritchie [47] have utilized the inductance waveform of a single loop detector data to estimate a 

vehicle speed from a single loop. They assume that the speed of the vehicle is correlated to rate of 

change in inductance of the waveform (slew rate). A linear regression model is defined to obtain a 

vehicle speed from its slew rate.  

Sun [48] has proposed two methods (Self-Organizing Feature Map; and heuristic discriminant 

algorithm) to classify vehicles into seven predefined vehicle classes. Ritchie et al., [50, 51] have 

demonstrated the potential application of above classification to estimate travel time on urban arterial 

by comparing the inductance waveform at downstream detector with different upstream detectors. For 

this they have applied Probabilistic Neural Network (PNN) and heuristic method to identify the 

upstream origin of the vehicle. 

The above approaches are based on raw inductance output from the detector. The raw inductance 

output from the detector is the moving average of inductance changes with the window size 

determined by the loop detection area. The reduction in the moving average effect from the raw 

inductance outputs should improve the reidentification rate as it exposes more uniqueness of each 

signature. Kwon [49] has modeled inductance of loop detector as a convolution of original vehicle 

signature and loop system function (impulse response of loop detector). As both original vehicle 

signature and loop system functions are unknown therefore, they have formulated the problem as blind 

convolution problem.  

Comments: The above approaches of advance signal processing are still in initial research states, and 

further study is needed to increase the accuracy, reliability and reidentification rate. Moreover, for 

implementation of inductance waveform based algorithm, existing infrastructure should be upgraded 

with advance detectors with inductance waveform capability and a high bandwidth in the data 

communication channel. 

2.2.5 Time series analysis 

Models based on time series analysis such as, auto-regressive integrated moving average (ARIMA) 

[52, 53] and state-space model5 (Kalman Filtering) [54, 55] have been applied for prediction of basic 

traffic parameters (volume, speed and occupancy). Vlahogianni et al. [56] provides a good review of 

short-term traffic prediction models. 

Comments: One of the limitations of these models includes averaging (smoothing) of input data over 

long time intervals. Hence they have the tendency to concentrate on the trend of the data and miss the 

extremes. Thus when traffic is in transition state of then such models cannot capture the behavior from 

congested to free-flow situation and vice versa. Specifically, in urban signalized networks, the short-

                                                      
5 The term ―State-space model‖ and ―Kalman Filter model‖ refer to the same basic underlying theory. The term 

state space refers to the model and the term Kalman filter refers to the estimation of the state. 
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term fluctuations (induced due to external control) are difficult to capture from these models. Such 

models are also dependent on historical database and for travel time prediction accurate historical 

database of travel time is not easily available.  

2.2.6 Neural Networks based 

Artificial intelligence (AI) is generally defined as study and design of a system (intelligent agents) that 

perceives its environment and takes actions that maximize its chances of success. Neural-networks are 

one of the tools for AI research and are originally applied for machine learning problems. Neural-

networks algorithms are data driven tools with the potential to learn the complex non-linear 

relationship between variables by identifying the patterns in the data. Researchers have used the 

technique for short-term traffic and travel time forecasting on freeways. To improve estimation 

accuracy and efficiency researchers have proposed different approaches such as, modular neural 

networks (MNN) [57], spectral basis neural networks (SNN) [58], state-space neural networks (SSNN) 

[59] and neural networks with various hybrid approaches [60-62]. 

Comments: The application of these algorithms can be like a black box; and care should be taken to 

verify the reliability of the output and that the model is applied well within the limits for which it is 

trained. Data driven models, have the limitations of transferability, as the model is trained with data 

that is location specific, i.e., results obtained from one location are not transferable to another. 

Nevertheless, these models are applied in different engineering discipline and many promising results 

have been reported in literature. Dougherty [63] provides a review of neural networks applied to 

transportation engineering.  

2.2.7 Probabilistic models 

Lin et al. (Lin et al., 2006, Tsekeris, 2006, Lin et al., 2004) utilize conditional probabilistic approach 

to predict the probability of the vehicle to be delayed at an intersection, given the delay condition at 

the upstream intersection, and hence the delay of the vehicle at an intersection. Dias [64] has applied 

Bayesian network to predict travel time on an arterial route using probe data. 

Comments: The probability transition matrix for delay estimation at an intersection is to be calibrated 

based on the flow level, the flow composition and the degree of signal coordination along the path of 

the route. Lin et al. [65] identify the inherent limitations in the model “…the nominal delay used in the 

formulation is based on the existing delay formula for intersection. It is well known that many existing 

delay formulas perform poorly under oversaturated situation. The performance of the model may be 

improved when more sophisticated delay formula become available” [65]. 

The model by Dias [64] is developed for undersaturated traffic conditions with fixed signal timings. 

Dias argues that under the assumption of undersaturated and fixed signal control the travel time 

prediction is obsolete. Nevertheless, it provides understanding the patterns in travel time distribution 

along signalized arterials.  

2.2.8 Automatic Vehicle Identification (AVI) technology 

Automatic Vehicle Identification (AVI) technology identifies the vehicle when it is observed at fixed 

AVI locations. AVI sensors include: video image processor; inductive loop; radio frequency 

optical/infrared (barcode); surface acoustical wave (SAW) etc. Video image processor (Automatic 

Number Plate Recognition (ANPR) ) captures the license plate of the vehicle. Inductive loop 

technology uses an antenna embedded in the pavement at the station and transponder mounted at the 

underside of the vehicle communicates with the antenna. The barcode technology identifies the vehicle 

using barcode sticker located on the vehicle. The details of the sensor technology can be found in 

Klein [66]. 

http://en.wikipedia.org/wiki/Intelligent_agents
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AVI sensors provide vehicle identity and time stamp when it is identified. Travel time of a vehicle 

identified between two AVI locations is the time difference between the time when it was identified at 

the respective locations.  

ANPR utilizes image processing technology and the percentage of vehicles captured by these can 

range from 50% to 90%. For travel time estimation the vehicle ID should be recognized at both the 

AVI locations. In urban environment, the gap between the vehicles is likely to be lower and hence the 

ANPR of smaller vehicles (cars) can be hindered by larger vehicles (buses). The vehicle recognized at 

one site may not necessarily be recognized at other location. Therefore, the matching rate of a vehicle 

between two AVI locations can be lower in urban environment. Nevertheless, AVI technology 

captures a very good percentage of vehicles and can provide statistically accurate average travel time.  

2.3 Mobile sensor based 

Position detection equipments such as Global Positioning Systems (GPS), mobile phone or Personal 

Handy phone Systems (PHS) are capable of providing time-space trajectory of the vehicle equipped 

with such equipments. Here vehicle with such equipments is referred as probe vehicle6, and data 

provided by these vehicles as probe vehicle data. The probe data obtained is its position coordinates 

(longitudes and latitudes) at different time intervals (defined by data transmission frequency). Thus it 

can provide direct travel time from point-to-point on the path traversed by the probe vehicle. For this, 

the coordinates are to be map-matched with the digital road network to know its position on the road. 

The accuracy of map-matching depends on the accuracy and frequency of the probe data in addition to 

the accuracy of the digital road network.  

The estimate for the average link travel time, for all the vehicles (population) traversing the link, 

during certain interval is obtained by applying statistical sampling theory on the travel time obtained 

from the sample of different probe vehicles traversing the respective link at the respective time 

interval. The quality and reliability of the travel time estimates is sensitive to the number of probe 

observations on spatial-temporal scale which interests practitioners and researches to know the 

minimum number of probes required to estimate statistically accurate average travel time.  

2.3.1 Minimum number of  probes (How many vehicles need 

to serve as probes?) 

The above question can be mathematically formulated (2.35) as the minimum number of probes (np) 

required, on a given link in some time interval, to ensure that the estimated travel time value is within 

a predetermined statistical accuracy.  

 

m ax
: Prob

p

x
n  (2.35) 

Where: np is number of probes;  

α is the level of significance and (1- α)*100 is the confidence level.  

x  is the mean estimate from the sample (probe vehicles); 

                                                      
6 In literature, probe vehicle is differentiated from floating car. Floating car (active vehicle) is a test vehicle 

where the driver is the member of the data collection team. The driving behaviour is controlled to match the 

desired driving style, such as average car. Whereas, probe vehicle (passive vehicle) is already in traffic steam 

and driver of the probe vehicle is not instructed to follow any specific driving style. 
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µ is mean estimate from the population (all the vehicles)7; and 

εmax is the threshold relative error.  

Equation (2.35), defines the number of probes required such that the probability (of relative absolute 

deviation 
x

 from estimate is less than εmax) is more than α. 

The solution for equation (2.35) is obtained from central limit theorem, assuming:  

i. population is normally distributed;  

ii. if population is not normally distributed than sample size should be large (>30). 

If the estimation interval is short (for instance less and 15 min) and link is not heavily travelled then 

the assumptions are generally violated. In such situation, the sample size can be determined if 

probability density function of the mean travel time of all probes in the link during measurement time 

period is known. The estimation of probability density function is rather complicated therefore in 

literature a trade-off between the central limit theorem approximation and computation complexity is 

made. Applying the central limit theorem the required minimum number of probes is obtained as: 

 

2 2

/ 2

2

m ax

;
p

Z C V
n C V  (2.36) 

Where ζ is the population standard deviation;  

Zα/2 is the standard normal variates for α level of significance (Z0.05/2 = 1.96 and Z0.1//2 = 1.645); 

and 

CV is the coefficient of variation of the population.  

It is clear from equation (2.36) that for a given reliability criteria (level of significance and threshold 

relative error) sample size directly depends on the coefficient of variation (CV) of the population. 

Higher the coefficient of variation higher is the sample size (see Figure 2-1). The CV for urban links is 

expected to be larger than on freeways due to stop-and-go running conditions on urban networks8.  

                                                      
7 Here relative absolute deviation is considered instead of absolute deviation. Absolute deviation has different 

meaning for different travel time values i.e., it is more significant for smaller travel time than for larger travel 

time. 

8 The observed CV values for time periods of 5 min interval on an urban link A→DLft (see section 5.3.1) in 

Lucerne, Switzerland ranges from 26% to 55%.  

Turner and Holdener ([67] S. M. Turner and D. J. Holdener, "Probe vehicle sample sizes for real-time 

information: the Houston experience," in Vehicle Navigation and Information Systems Conference (VNIS), 

Seattle, WA, USA, 1995, pp. 3-10.) have reported CV from a freeway in Houston for 5 min interval in range 

from 5% to 15%. 
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Figure 2-1: Relation between number of probes and coefficient of variation for 95% and 90% 
confidence level and 10 % error. 

Using the empirical data from AVI installed on freeways in Houston, Turner and Holdener [67] have 

reported the minimum required probe sample size for:  

i. time periods (for travel time estimation) of 5 min and 15 min;  

ii. (1- α ): Confidence levels of 95% and 90%; and 

iii. εmax: relative error of 10% .  

The estimate is based on 85% percentile CV values that range from 5% to 15% for 5 min interval and 

5% to 19% for 15 min interval. The results are that for 5 min periods with 95% confidence level, the 

sample sizes range from 1 probe vehicle every 5 min for lanes having flow at free-flow conditions to 6 

probe vehicles every 5 min for severely congested lanes. Sample sizes are slightly lower for a 90% 

confidence level. They have also provided a regression equation to estimate 85th percentile of 

coefficient of variation (CV) based on average speed and the required numbers of probe vehicles are 

estimated by equation (2.36). The validation of the regression equation is not reported.  

The above study by Turner and Holdener does not take into account the adequate coverage of the 

network by the probe. Srinivasan and Jovanis [68] have gone one step further and have defined a 

heuristic algorithm for estimating number of probe vehicles required in network (N) for reliable travel 

time estimation The algorithm accounts for the link reliability criterion defined in terms of level of 

significance (α) and relative error (ε) (Refer equation (2.36).) and for the network adequacy in terms of 

proportion of links to be covered (po).  

The steps of the algorithm by Srinivasan and Jovanis are as follows: 

Step 1 Determine the minimum number of probes required for each link during each 

measurement period (nplt);  

Step 2 Sample N probe vehicles from the population of all vehicles trips assigned 

(dynamic or stochastic assignment) on the network;  

Step 3 Assign the N probe vehicles trips using the dynamic or stochastic assignment 

model; 

Step 4 Determine the proportion of links covered (pt) reliably by probes (i.e., links in 

which number of probes in measurement period is greater than its corresponding 

minimum number determined in Step 1.); 

Step 5 Average the proportion of link for the peak period to obtain the average link 

coverage p.  

The above steps are repeated with increasing N until pre-specified proportion (po) of links is covered 

reliably (p ≥ p0). They have tested the algorithm using simulation and the results indicated that:  
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i. Total number of probes in the system (N) increases almost linearly with increasing 

value of minimum number of probes (np) required on each link during each estimation 

interval (tu). The increase is steeper if estimation interval is reduced from 20 min to 5 

min; 

ii. If the estimation interval (tu) decreases, then the number of probes (N) increases non-

linearly. They found that there is a ―knee‖ in the curve at a tu of about 10 min, 

particularly for higher value of np The measurement interval less than 10 min has 

steeper increase in N with decrease of tu; 

iii. The proportion of link traversed increases at a decreasing rate with increasing N;  

iv. It is also noted that freeways have significantly higher link traversals than the arterials. 

This result is attributed to the user-optimal route choice model which results in drivers 

choosing faster route (freeways) over the slower routes (arterials).  

The above results are based on the simulation on a fixed network (Sacramento network) and depend 

on the OD and route choice parameters used. Nevertheless, it provide a good insight into the relation 

of different variables (N, np, tu and p) that affect the travel time estimation using probes.  

2.3.2 Bias in probe on signalized links 

Probe vehicle may not be true representative of the population of vehicle traversing. This issue is more 

severe in urban environment where there is significant fluctuation in the flow of vehicles and travel 

time for different exit movements on a link may be significantly different. Hellinga and Fu [69] has 

demonstrated that bias in the proportion of probes associated with each link exit movements and/or 

arrival time distribution of probes can lead to sample mean that does not asymptotically approach the 

population mean, regardless of the sample size. To reduce the effect of the above bias they have 

proposed a methodology based on stratified sampling technique. The methodology requires the arrival 

time distribution of all the vehicles to weight each probe travel time report. The arrival time 

distribution is generally not known and they propose it to be estimated from detector or some other 

traffic surveillance method. 

2.3.3 GPS based mobile sensors 

GPS is the most accurate mobile sensor. Differential GPS can provide accuracy of 2 m to 10 m 

whereas kinematic GPS can provide accuracy of 5 cm to 15 cm. However, commercially available 

GPS equipments have relatively low accuracy with high data transmission frequency (Around 30 s or 

a minute.) [70]. 

In urban environment, the network is generally dense with short link lengths; therefore data with low 

accuracy can result in significant error in map-matching and with high frequency can result in missing 

information for the travel on certain links. The effect of: a) accuracy of probe data; b) rate of data 

transmission; and c) density of urban network, on transport applications (such as travel time and OD 

estimation) should not overlooked [71]. 

2.3.4 Emerging mobile sensors: Cellular phones 

Every switched on mobile phone (CDMA, GSM, UMTS and GPRS) on a vehicle has the potential to 

become traffic probe. There is an increasing interest of researches to develop algorithms to use of 

mobile phone as traffic probes. PHS and mobile phone use network based position technology and 

have accuracy of around 50 ~ 100 m and 150 ~ 500 m, respectively. As the accuracy of localization of 

mobile phone is less accurate, therefore significant large number of mobile devices has to be tracked 

for travel time estimation. Mobile phone can act as a probe only if it is carried in the vehicle traversing 
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the road. The data obtained from mobile phone is from all the users, hence the users in vehicle and 

outside vehicle are to be differentiated, which is complicated. For instance, if there is a metro track 

parallel to the road, then mobile phone data from a user traversing in the metro can be misinterpreted 

as traversing on the road, leading to wrong estimate of travel time. Similar misinterpretation can be for 

a pedestrian using a mobile phone and traversing slowly on the footpath along the road. 

In addition, to above misinterpretations of cellular phone other issues such as potential public concerns 

about privacy; and growing awareness of the road safety implications is to be resolved. Moreover, for 

successful deployment of the cellular phone as mobile sensors, public-private partnerships between 

transport agencies and cellular carriers are also required [72-74].  

2.3.5 Transit vehicles as mobile sensors 

Transit vehicles, such as public buses, are increasingly equipped with automatic vehicle location 

(AVL) tracking equipments (e.g. GPS) with the objective of locating them for transit management and 

providing arrival time information to the passengers. They are inherently different from ordinary probe 

vehicles due to the following characteristics: 

i. Buses stop at the bus stop to collect and discharge the passengers for certain dwelling 

time. If there is a bus bay, then they have to diverge from and merge to the traffic 

stream. In absence of bus bay they generally block the lane at the stop until the 

dwelling time.  

ii. They generally travel to the right-most (right hand drive) or left-most (left hand drive) 

lane of the corridor. If the average speed differs among the lane then there is a bias in 

the travel time estimated from the bus.  

iii. If there is a separate bus lane then travel time estimated from the bus is highly biased.  

iv. They are both mechanically and operationally different from those of other cars 

running on the street.  

Buses typically run on heavily travelled urban corridors- links where travel time information is mostly 

required. They run at high frequency during the peak-period, which provides better sample size of 

buses for time when information is most needed. Nevertheless, they have a potential to be a 

supplement source of travel time information.  

Elango and Dailey [75] and Cathey and Dailey [76] have applied Kalman Filter  technique to the noisy 

space-time measurements of AVL equipped transit vehicles for smooth estimates of transit vehicle 

speeds. They concluded that AVL data from a fleet of transit vehicles travelling along prescribed 

routes can be used to define virtual speed sensors along the route. The speed obtained from the virtual 

sensors defines the speed of the transit vehicles. To correlate the virtual sensor speed to the average 

speed of the link the relationship between the two should be explored.  

Chakroborty and Kikuchi [77] have examined the relationship between travel time of a transit vehicle 

(bus) and of other vehicle in the same traffic stream for stability and data adjustment needs. They used 

the data from major corridors in Delaware, USA, and found that the difference in travel time was 

relatively stable. Based on their findings they have suggested functional form to predict average travel 

time of vehicle from observed travel time of bus in the same traffic stream. However, the functional 

form should be tested on different sites for a concrete conclusion. The applicability of the functional 

form with respect to road section, time of the day and other local factors should also be investigated.  
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2.3.6 General issues with mobile sensors 

In addition to the issues mentioned above, following are the general issues with use of probe vehicle.  

Note: the objective of this research is not to address different issues related to mobile sensors.  

2.3.6.1 Gaps in data 

The availability of transmission signals is a crucial factor to obtain real-time data from mobile probes. 

GPS system requires line-of-sight with at least four satellites to estimate its position. Due to 

unavailability of signals (communication error) there are instances when data is not recorded by GPS 

equipment. Communication error can occur when GPS equipment is in the vicinity of elevated 

structures such as buildings or is under an infrastructure such as tunnel. In urban environment due to 

dense elevated structures the error is more common and the effect is terms as urban canyon. 

The traffic state between two successive data is not known, and assumptions such as uniform flow 

between two successive data are employed. Such assumptions may not be appropriate in urban 

environment and it may result in inaccurate determination of time when the probe vehicle is at a point 

of interest.  

2.3.6.2 Sparse spatial-temporal coverage of probe vehicle 

Probe vehicle only provides information for the areas covered by the probe and time interval in which 

probe is available. For instance, if taxi is used as a probe vehicle then higher confidence in travel time 

estimation is obtained only from areas heavily served by taxis. For continuous travel time estimation 

generally travel time is extrapolated for time intervals with no probe. Therefore, for spatial-temporal 

travel time estimation, probe vehicles must be supplemented by other sources.  

2.3.6.3 Lag in travel time estimation 

Travel time from the probe is only available when the probe has actually traversed the link i.e., it is the 

experienced travel time. It is not the predicted travel time. Say at time tc, the measured travel time on a 

link from a probe is tp. It means that at time, tc – tp, the link travel time was tp. Depending on the link 

length and traffic condition, the actual link travel time at time tc can be significantly different from tp. 

If link length is long or traffic is during congestion build-up or dissipation process then there can be 

significant variation in link travel time at tc – tp and tc.  

2.3.6.4 Probe market penetration  

Level of market penetration of the probe vehicles is an important and essential factor in estimating 

travel time and its reliability using probe vehicle data. It is defined as the ratio of number of probe 

vehicles to total vehicles in the network. It is to be noted that the level of market penetration generally 

have spatial and temporal variation. Therefore, the definition of level of market penetration should be 

supported by its level of aggregation i.e., time interval and OD pair for which number of probes and 

total number of vehicles is determined. 

Van Aerde et al. [78] have studied the relationship between the reliability of the travel time estimates 

from probe and market penetration. They concluded that: 

i. On signalized arterials: Interrupted nature of traffic in addition to low capacity results 

in high variability in the percentage of probes in the traffic stream. So, it is difficult to 

reliably estimate the travel time on arterials for low levels of market penetration; 
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ii. On freeways: Non-interrupted nature of traffic flow makes travel time estimation 

relatively more reliable than arterials. Moreover, due to high capacity there is increased 

likelihood of observing relatively more number of probes and therefore reliable travel 

time even from low levels of market penetration. 

iii. An assessment based on availability of continuous and accurate probe information can 

be seriously flawed for low and medium levels of market penetration.  

2.4 Data fusion based 

Traffic data from different sources can have different accuracies which results in inconsistency and 

sometimes even contradictory estimates. Data fusion is the processing tool that takes into account the 

quality of the data provided by each source with the aim to increase the accuracy, reliability and 

robustness of the prediction. Interested readers can also refer to Hall and Llinas [79] for introduction 

to data fusion and its applications. Different data fusion techniques for different engineering 

applications have been proposed in literature and can be classified into [80]: 

i. Statistic based: weighted average, multivariate statistical analysis; 

ii. Probabilistic based: Bayesian approach, evidence theory; and 

iii. Neuromimetic networks based: including artificial intelligence, genetic algorithm and 

neural networks.  

In weighted average based technique, an estimator of travel time from each source is derived and 

thereafter, estimates are combined according to the weighted mean. The weights are generally derived 

from variance-covariance estimation errors. Berka et al. [81] fuses travel time (2.37) obtained from 

detectors (td) and mean probe travel time (tpm) by method of weighted averages. For the computation of 

weights several variables are used, including: the sum of weights of reasonable probe reports (Np); 

standard deviation of probe travel  time (ζp) and detector travel time (ζd), respectively; weights 

assigned to detector travel time in data screening (Wd); and fusion adjustment factors (fd, fp) to control 

the contribution of each data source to the finally fused travel time (tf). 

The determination of these parameters is a rather complicated procedure and moreover, some of the 

model parameters have to be estimated from historical data.  
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Westerman et al. [82] have developed a model named COMETT in which they explore the fusion of 

probe vehicles and loop detector data for freeway travel time and incident detection in California 

Partners for Advance Transit and Highways (PATH) project. Travel time from loop detector data is 

based on defining cumulative plots. The divergence in the cumulative plots due to detector counting 

error is corrected by resetting the counts to zero (re-calibration) when the following condition is met. 

They assume that meso-fluctuations in traffic flow, defined as characteristic fluctuations over periods 

from half a minute to various minutes, are preserved over several kilometers. The meso-fluctuation in 

the pair of cumulative plots are correlated by minimizing, through least square, the surface area 

between the meso-fluctuation portions of the cumulative plots. Surface areas are defined through 

iteratively shifting the plot horizontally. If the surface area is below certain empirical threshold then 

they are considered to be correlated. Mean link travel time is the function of the horizontal shift of 

plots. If the difference of this mean link travel time with the travel time obtained from the mean speed 

measured from the upstream and downstream detector is below certain empirical threshold then the re-

calibration is performed.  
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The above assumption of preservation of the meso-fluctuations in traffic flow is easily violated during 

congested conditions and interactions with flow from on-ramp and off-ramp, which therefore limits 

the application of the above model. 

Westerman et al. have also developed a model to estimate link mean speed (travel time) based on data 

from probe vehicles and historical database. For this they assume that the probability density function 

of road link mean speed and traffic volume for a link is known or can be reliably obtained from the 

historical database. The required link mean speed is estimated using Bayes estimator and assuming: a) 

normal distribution of speeds from probe vehicle under free flow regime; and b) gamma distribution of 

individual probe vehicles speeds. For details refer to Chapter 3 of [82]. Once the average speed (travel 

time) from probe vehicles is estimated the above defined re-calibration process can be repeated by 

considering the average link travel time from the probe vehicles as the reference travel time. 

As quoted in the report ―For using the probe vehicle data to perform additional re-calibration, it is 

important to ascertain that the road link mean speed obtained from the probe vehicle samples is 

correct.”. For small sample size of probes the model requires historical database of probability density 

functions which is not easily obtainable. Moreover, the validation of the above model is not 

quantitative and can only be applied for freeways. Nevertheless, the model addresses to the 

vulnerability of the cumulative plot for travel time estimation under detector error and mid-link 

sources and sinks.  

Choi and Chung [83] have applied the data fusion technique for 5 min average travel time estimates 

using detector and probe vehicle data. The algorithm first estimates space-mean speed from detector 

counts and occupancy using Dailey [84] equation, which provides travel time estimated for each 

minutes. Each minutes travel time estimated are aggregated using Voting Technique for 5 min average 

travel time (TTd). Average 5 min travel time (TTg) from GPS probes are obtained using Fuzzy 

regression. Finally fused link travel time is obtained by applying Bayesian Pooling Method on TTd and 

TTg. The methodology is tested using real data collected on four consecutive urban links, in Suwon, 

Korea. It is not documented whether the links were signalized or not. As they have used both mid-link 

and stop-line detectors for space mean speed estimated, therefore it can be concluded that the links 

were not signalized. The MAPE for four links is reported in the ranges from 15% to 26.5%. The 

algorithm is tested for undersaturated traffic condition and should be tested for oversaturated traffic 

condition too. They quote that “a different level of service might produce totally different weights of 

each data collection mechanism. In such cases, a different data fusion method and/or a revision of the 

proposed algorithm may be needed”. 

Xie et al., [85] have applied two independent neural networks methodologies: Multi-Layer Perception 

(MLP) and Multi-Layer regression (MLR) models to combine output from loop detector and probe 

vehicles. For input to the data fusion: a) Singapore model [15] is applied to estimate the speed from 

the detector data; and b) Average travel time from probe samples are considered only if the sample 

size during estimation interval is more than 10 vehicles or is more than the minimum required sample 

size determined by central limit theorem. The model is tested using simulation and it is reported that 

RMSE for MLR and MLP model is 3.44 km/h and 2.52 km/h, respectively. The sensitivity analysis of 

estimation accuracy over probe vehicle penetration rate indicates that at least 3% of the probes are 

required for travel time estimates from probe and hence for data fusion. Moreover, there is marginal 

improvement in accuracy from data fusion if more than 18% of probes exist, as accuracy from probe 

only with such as high penetration rate is very good.  

Data fusion of data from different sources has the potential to improve the accuracy and reliability of 

the estimates. However, the fusion of the data does not makes much sense if one of the sources has 

sufficient high accuracy as the improvement in accuracy is marginal or even negative. For instance, if 

probe sample size is very large (say penetration rate is more than 20%) then the travel time estimates 

from probes is relatively quite accurate. Fusion of the information with travel time estimates from 

detectors with low accuracy may have little improvement.  

In literature generally, different methodologies such as neural networks [86, 87], Bayesian score rule 

[88], and Dempster-Shafer theory [89] are utilized to fuse detector and probe vehicle data for travel 

time estimation and incident detection. Klein et al. [90] introduced Dempster-Shafer theory for data 
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fusion for advance traffic management whilst El Faouzi [80] provides an overview of data fusion in 

road traffic engineering and Dailey et al., [91] summaries ITS data fusion projects. 
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Table 2-1: Critical overview of the literature 

Model Type Reference A
9
 MS

10
 Mid

11
 DE

12
 Comments 

Regression based Wardrop [7] U No No No Generally regression models are site specific and their transferability 

is limited. Moreover, if regression models parameters are calibrated 

with simulated data, then it is necessary that simulation model should 

be properly calibrated with field observations. 

The model calibrated for a specific condition should not be 

generalized without further testing and calibration. 

Gipps [9] No No No 

Gault [8] No No No 

Young [10] No No No 

Sisiopiku et al [12] No No No 

Xie et al., [15] No No No 

Rice and Van Zwet [16] F No No No 

Queueing  

theory 

Static 

Bureau of Public Roads [18], 

Davidson‘s function [19, 20],  

Conical-volume delay 

functions [21], Akcelik 

function [22] etc 

U No No No Inability to estimate delay for traffic conditions that are different from 

those assumed in the models. For example, unusual flow patterns 

which do not follow the traditional statistical distributions cannot be 

modeled. 

The models are simple and favorable for transport planning and policy 

applications but not for ITS applications where more accurate and 

reliable travel time in real time is required. Japanese Sand-Glass [29]  F No No No 

 Delay Time Model [29] U No No No Requires extensive calibration for reasonable accuracy. 

                                                      
9 A: Application (F: Freeway facilities, U: Urban facilities) 

10 MS: Exit movement specific travel time estimation (ND: Not documented) 

11 Mid: Consideration of mid-link sources and sinks (ND: Not documented) 

12 DE: Consideration of detector error (ND: Not documented) 
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Model Type Reference A
9
 MS

10
 Mid

11
 DE

12
 Comments 

Dynamic 

TRANSYT/SCOOT [31] U ND ND ND The objective of the model is to optimize signal parameters and not to 

estimate travel time.  

The performance of the model for travel time estimation with respect 

to the detector counting error and mid-link source/sinks is not 

documented in the literature. 

Highway Capacity Manual 

2000 [27] 

U No No No The model is simple and favorable for transport planning and policy 

applications, where travel time for larger period is required. For real 

time application, the parameters such as left over queue is not easy to 

obtain.   

Traffic 

flow 

theory  

Nam and Drew [34] F No No Yes The model is limited to confined link of 

freeway (no on/off ramp) under FIFO 

queueing discipline. 

The detector error 

considered is 

approximation for a longer 

time period and fluctuations 

in the error especially 

during congested conditions 

is not considered.   

Oh et al., [35] F No Yes Yes Requires detectors at each mid-link 

sinks (off-ramp) and sources (on-ramp). 

Pattern 

recognition 

k-NN 

You and Kim (2000) 

Bajwa et al. [37] 

F No No Yes Not able to predict travel time for traffic patterns not present in 

historical database.  

The technique highly depends on the quality and quantity of the 

historical database. Error in the historical travel time estimation is 

reflected in the prediction.  

An accurate travel time estimation methodology is required to build 

the historical database. 

Robinson and Polak [39] U No No Yes 

Cross-

correlation 

Dailey [40]  F No No No Only if sufficient correlation between the flow at two detectors. 

Model only for freeways with low occupancy (less than 15%). 
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Model Type Reference A
9
 MS

10
 Mid

11
 DE

12
 Comments 

Petty et al., [41] F No No No The model is applicable only for freeway section where platoon can 

exist i.e., absence of on-ramp and off-ramp. 

 

Vehicle 

reidenti-

fication 

Coifman [42-46]. F No No No Reidentification based on on vehicle length estimation. The 

reidentification rate depends on percentage of heavy vehicles and 

conservation of platoon in traffic flow from upstream to downstream. 

Ritchie et al. [50, 51] 

Kwon [49] 

F/U No No No Reidentification based on inductive waveform from advance inductive 

loop detectors.  

Time-

series 

analysis 

ARIMA 

Hamed et al., [52] 

Davis et al.[53]  

 

F No No No Applicable for forecasting.  

These models have the tendency to concentrate on the trend in the data 

and miss the extremes. Thus when traffic is in transition state then 

such models cannot capture the behavior from stop-and-go to free flow 

situation and vice versa. 

Kalman 

filtering 

Yang [54] 

 Stathopoulos and 

Karlaftis[55] 

Neural networks Park and Rilett [57] 

Park et al., [58] 

van Lint et al., [59]  

Chen et al.,[60]  

Dia [61] 

F No No No The applications of these algorithms can be like a black box; and care 

should be taken to verify the reliability of the output and that the 

model is applied well within the limits for which it is trained. 

Models are location-specific. 

Liu et al.[62] U No No No 
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Model Type Reference A
9
 MS

10
 Mid

11
 DE

12
 Comments 

Probabilistic models Lin et al., [65, 92]  

Tsekeris, [93] 

 

U No No No Probability transition matrix for delay estimation at an intersection is 

to be calibrated based on the flow level, the flow composition and the 

degree of signal coordination along the path of the route. 

Dias [64] U Yes No No Only for undersaturated with fixed signal control.  

Requires building of historical database. 

Transit vehicles as mobile 

sensors 

Elango and Dailey [75] 

Cathey and Dailey [76] 

F/U No No ND The methodology provides speed of the transit 

vehicle.  

The correlation of the speed of transit vehicle 

with other vehicles should be explored. 

Travel time 

information using 

transit vehicles 

can be integrated 

with other data 

sources using data 

fusion techniques 

for better 

accuracy and 

reliability. 

Chakroborty and Kikuchi 

[77] 

U No No ND The functional form to predict average travel 

time of vehicle from observed travel time of bus 

in the same traffic stream should be tested on 

different sites for a concrete conclusion. 

Data fusion Westerman et al., (1996) F No Yes Yes The assumption of preservation of "meso-

fluctuations" in traffic flow is easily violated 

during congested conditions and interactions with 

flow from on/off ramp.  

Mean link speed from probe samples should be 

accurately estimated. 

The validation of the model is not quantitative.  

Nevertheless, the model addresses to the 

vulnerability of the cumulative plot for travel 

time estimation under detector error and mid-link 

sources and sinks. 

Data fusion of 

data from 

different sources 

has the potential 

to improve the 

accuracy and 

reliability of the 

estimates.  

However, the 

fusion of the data 

does not make 

much sense if one 
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Model Type Reference A
9
 MS

10
 Mid

11
 DE

12
 Comments 

Berka et al., (1995) 

El Faouzi (2004a, 2004b) 

 No No No Weighted average of travel time from detectors 

and mean travel time from probes. 

 The determination of weights is rather 

complicated. 

of the sources has 

sufficient high 

accuracy or 

relatively low 

accuracy.  

Choi and Chung (2002) U No No No Performance should be tested for different traffic 

conditions. 

Model requires calibration 

Xie et al., (2004) U No No No Validity of the model should be checked with 

read data 

 



2 Travel time estimation: A literature review 

 
39 

2.5 Critical overview 

Statistical comparison of different models using the same data set should be valuable. However, 

practically it is difficult due to different assumptions made, applicability in traffic conditions and 

variables involved. Only few examples in literature such as Xie et al., [15] have compared their 

models with other similar models in literature. 

A critical overview of the literature reviewed in this chapter is provided in the Table 2-1. Researchers 

have proposed number of models with various degree of complexities ranging from simple naïve 

regression, traffic flow theory based, pattern recognition to advance neural networks, and data fusion 

techniques.  

Model specified for specific conditions should not be generalized without further testing and 

calibration. A majority of literature on travel time estimation is on freeways and cannot be applied as it 

is on urban networks due to the different behavior of traffic on the two facilities (Refer to Section 

1.3.). The complexities related to the urban network includes: a) interrupted traffic due to conflicting 

areas such as intersections (signalized or non signalized) and significant delay from the interruption; b) 

significant traffic flow from a mid-link source and/or to a mid-link sink; c) significant difference in 

travel time for different turning movements associated with a link; and d) mid-link delay due to 

mid-link interruptions such as pedestrian crossing, or a leading vehicle turning towards a side street 

etc.  

Majority of models for travel time estimation on urban networks considers the delay at intersection 

though the effect of flow to/from mid-link sinks/sources is not considered. The models generally 

provide average travel time for the whole link, which may not be a true representative of travel time 

for different link exit turning movements.  

Moreover, the performance of the models with respect to detector counting error is not evaluated. 

Though, one can observe detector counting error of ±5% even under normal running conditions.  

Models based on probe data assume that there is sufficient number of probe vehicles per estimation 

interval. The current market penetration of probe is low and the required number of probes per 

estimation interval is not easily available.  

Researchers have also applied data fusion technique to fuse data from detector and probe vehicles. 

Integrating data from multisource have the potential to improve the accuracy and reliability of the 

estimates. 

Literature is abundant with travel time estimation models though each model has its own limitations. 

New models are still being sought by many researchers as there are avenues for improvement 

especially in terms of transferability, applicability, robustness and sensitivity to sensor errors.  

Equation Chapter (Next) Section 1 
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3 Methodology development and testing 

In this chapter, a methodology for travel time estimation on signalized urban network is developed and 

is also thoroughly tested for different scenarios. 

3.1 Basis for methodology development 

In section 1.6, the classical analytical procedure for travel time estimation is presented. The procedure 

is based on defining cumulative plots at upstream entrance and downstream exit of the link. Interested 

reader can refer to Chapter 3 of Bhaskar [94] for estimation of cumulative plots, on signalized urban 

networks, by integrating stop-line detector data with signal timings. 

The issues for application of the classical procedure on urban network are also introduced in section 

1.6.3. The classical procedure is vulnerable to relative deviations amongst the cumulative plots as 

explained in the next section.  

The methodology developed in the research is based on the classical analytical procedure. The 

originality of the methodology resides in integrating cumulative plots with probe vehicle data to 

address the issues related to the application of the classical procedure on urban network. 

In Switzerland, stop-line detectors are available. Therefore, in this report, the cumulative plots are 

obtained at the upstream and downstream intersections. Note: the methodology is equally applicable 

for other detector configurations. 

3.2 Issue: Relative deviation amongst cumulative plots 

(RD) 

The issue of relative deviation amongst the cumulative plots (also termed as ―drift‖) is critical in the 

application of cumulative plots as can be figured out from the following section.  

3.2.1 Effect of  mid-link sinks and sources on cumulative plots 

An urban link can have different mid-link infrastructures such as, a side street, parking etc. Depending 

on the time of the day and day of the week, these mid-link infrastructures can act as sink, source or 

both. A parking can acts as both source and sink, whereas, one way side street is either a source or a 

sink. A significant proportion of the flow can be from a mid-link source or to a mid-link sink. This 

proportion is a dynamic entity i.e., varies with time, and one can easily observe, on average, around 

10% loss (or gain) of flow (or from) a side street.  

Figure 3-1, illustrates an example where 300 vehicles are observed at upstream and 10% of the 

vehicles are lost in the mid-link sink (one-way side street) resulting in only 270 vehicles observed at 

downstream. By integrating the detector data with signal controller data one can obtain the cumulative 

plots at both upstream, Uo(t), and downstream, D(t), location. The counts at upstream are also 

contributed by the vehicles which are lost in the mid-link sink. Assuming that one can obtain Ur(t)- the 

revised cumulative plot at upstream based on the vehicles which traverses the whole link i.e., 

excluding the vehicles which are lost in the sink. The area between Ur(t) and D(t) represents the true 
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actual total travel time for the vehicles that depart at downstream. However, practically Ur(t) is 

unknown (The vehicles lost in the mid-link sink are random and unknown.) and the area between Uo(t) 

and D(t) is estimated, this leads to the error in total travel time estimation which is represented by the 

shaded area in the figure. Comparing Ur(t) with U0(t), we can say that Uo(t) is overestimated resulting 

in relative deviation from D(t). If relative deviation is left unchecked, then the error can exponentially 

grow with time. 

For a mid-link source, there will be more counts at downstream than that at upstream, i.e. Uo(t) < D(t). 

In such situations area between the plots is negative and hence travel time cannot be obtained.  

In this report the above mentioned issue of relative deviation amongst the cumulative plots is 

referred as RD. 
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Uo(t): Observed cumulative 
plot at upstream. Estimated 
by integrating detector 
counts and signal timings at 
upstream intersection. 
 
Ur(t): Redefined cumulative 
plot at upstream obtained 
from vehicles that traverse 
the whole link. It does not 
include vehicles which are 
lost in mid-link sink. 
 
D(t): Observed cumulative 
plot at downstream. 
Estimated by integrating 
detector counts and signal 
timings at downstream 
intersection. 

Upstream intersection (u/s) Downstream intersection (d/s) 

Flow from 
three different 
movements 

 

Figure 3-1: Illustration of the effect of mid-link sink on classical analytical procedure. 

3.2.2 Detector counting error 

The counts from the detector are not always accurate. These errors are mainly due to: a) Cross-talk; b) 

Pulse break up; c) Closely spaced vehicle; and d) Detector hanging (Refer to Appendix A , Section 

A.1.1.). These errors are random and its effect on cumulative plots is analogous to that of mid-link 

sinks and sources. For instance, say upstream detector on average is overcounting by 10%, then the 

error represented in Figure 3-1 is analogous to what one would observe from detector counting.  
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3.3 CUPRITE development 

3.3.1 Probe vehicle data and cumulative plots 

Here probe vehicle is defined as the vehicle which can provide time stamp when at the intersection 

(position where cumulative plots are generated). Generally probe vehicle, such as taxi fleets, is 

equipped with GPS and can provide data for its position and time. There are issues related with probe 

vehicle such as frequency of data, map-matching of data, urban cannon etc. To address such issues is 

beyond the scope of this report. We assume that the time when probe vehicle is at upstream (tu) and 

downstream (td) intersection can be accurately obtained. 

CUPRITE integrates the data from the probe with the cumulative plots (see Figure 3-2). Under FIFO 

traffic discipline the horizontal distance between the plots provides travel time for the ith vehicle and 

the time when it is at upstream (tU) and downstream (tD). If we fix the probe information to the 

downstream cumulative plot i.e., tD = td, then the probe vehicle is the ith vehicle in the plots and we 

define ∆t = tu – tU.  

If there is no RD then for FIFO discipline ∆t should be zero (see Figure 3-3a) and for non-FIFO 

discipline (see Figure 3-3b) ∆t may or may not be zero. However, if we sum ∆t for all the vehicles in 

the cumulative plots, then the summation (∑∆t) should be zero, as presented in the example given in 

the figure. Due to this property the area between the plots represents total travel time, as long as 

all the vehicles represented in U(t) are also represented at D(t). 

The above property of ∑∆t = 0 is when the summation is performed for all the vehicles (populations) 

represented in the cumulative plots. However, probe vehicles are only a random sample from the 

population. The objective here is to reduce the RD due to mid-link sinks and sources, and detector 

counting error etc. We make a hypothesis that RD can be reduced by fixing the probe information to 

D(t) (or U(t)) and redefine U(t) (or D(t)) such that property of ∑∆t = 0 is satisfied. 
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Figure 3-2: Probe vehicle and cumulative plots. Fixing probe information to D(t). 
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Figure 3-3: Relation between probe data (vehicle space-time trajectory) and cumulative plots for 
FIFO and non-FIFO situation. 

Ideally, both U(t) and D(t) should be redefined to reduce the RD for instance, a scenario where 

downstream detector has counting error in addition to mid-link sink. However, simultaneous 

correction of the both is complicated. Here, the cumulative plots are obtained from stop-line detectors 

hence we are more confident in D(t) than in U(t) because the estimation of U(t) depends on the link 

configuration at upstream intersection (This is discussed further in Section 4.1.). We only have a pair 

of cumulative plots at upstream and downstream and do not know which of the plot is responsible for 

RD. To be consistent, in this report we fix the probe to D(t) and redefine U(t) by defining the set 

of points through which U(t) should pass.  

3.3.2 Virtual probe 

Virtual probe is defined as a virtual vehicle that, during undersaturated traffic flow, departs from the 

downstream at the end of signal green phase (i.e., it is the last vehicle that departs the signal green 

phase) and its travel time is free-flow travel time of the link. The probe is not real and is defined with 

the aim of reducing RD. 
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Figure 3-4: Illustration of virtual probe, fixed to D(t) at the end of signal green phase. 

We define traffic signal control cycle as time since the start of effective red phase (tRS) to end of 

effective green phase (tGE). For undersaturated traffic conditions vehicle queue should vanish at the 

end of each signal cycle and travel time for the vehicle entering the intersection during the end of 

signal cycle should be close to free-flow travel time (tff) of the link. Therefore, during undersaturated 

traffic conditions we can define virtual probe such that it is observed at upstream and downstream at 

time tGE - tff and tGE, respectively (i.e. for virtual probe tu = tGE - tff and td = tGE.) (see Figure 3-4).  

It is to be noted that the virtual probe is only defined if the following conditions for virtual probe are 

satisfied: 

i. Absence of source for significant mid-link delay; 

ii. No-leftover-queue; and 

iii. Presence of RD. 

3.3.2.1 Conditions for virtual probe 

 Absence of source for significant mid-link delay 

As the travel time of a virtual probe is defined as free-flow travel time of the link, therefore on the 

study link the following sources for significant mid-link delay should be absent:  

i. Mid-link intersection: U(t) and D(t) should be for stop-line locations of two 

consecutive intersections. If the intersections are not consecutive then unknown delay 

at mid-link intersection(s) results in non free-flow condition.  

ii. Mid-link on-street bus stop: On-street bus stop blocks the flow of vehicles following 

the bus therefore; there should not be any mid-link on street bus stop on the study link. 
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 No-leftover-queue  

Virtual probes are defined only for undersaturated conditions with logic of zero queue length at the 

end of signal green phase. Traffic condition is defined as undersaturated if counts during the signal 

cycle (or more specifically during signal green time) are less than the corresponding capacity i.e., 

 
GE RS

D t  –  D t  s * g  (3.1) 

To take into account the error in estimation of capacity we can rewrite the above equation as: 

 
GE RS

s * g  D t  –  D t  (3.2)  

Where: D(t) is the cumulative count at time t; s and g are saturation flow rate and effective signal 

green time, respectively; s*g is the capacity and ∆ is a calibration parameter.  

To define the above equation it is assumed that there is no spill-over from downstream link. If there is 

spill-over, then vehicles are restricted to flow resulting in low counts at stop-line detector. Capacity is 

generally not corrected to account for the spill-over from downstream link. Due to which the above 

equation is satisfied and system can falsely indicate undersaturated situation for spill-over cases. 

Though under such situation the queue may not vanish and hence virtual probe should not be defined. 

 Presence of RD 

 With above conditions, theoretically RD exists if: 

 1
( ( ))

GE GE ff
t U D t t  (3.3) 

As tff is a statistical estimator and its actual value can vary from driver to driver. Moreover, practically 

there can be presence of minor mid-link delays such as interaction with the vehicles from the mid-link 

source or mid-link sinks or pedestrian, etc. Therefore, certain confidence should be taken into account 

to define if there is a presence of RD. Hence to define virtual probe the following equation should be 

satisfied: 

 1
( ( )) [ , ]

GE GE ff ff
U D t t t t  (3.4) 

Where δ is a calibration parameter taking into account the variation in the estimation of tff. It can be 

considered equal to the standard deviation of the estimate of tff. 

3.3.3 CUPRITE architecture 

The architecture for CUPRITE is as follows (see Figure 3-5): 

Step 1 Cumulative plots are defined by integrating signal controller data with detector 

data (Refer to [95]). 

Step 2 Probe vehicle data (list of [tu] and [td] ) is defined: 

a. Fixing real probe data with D(t) (Section 3.3.1). 

b. Only if the conditions for virtual probe (Section 3.3.2.1) are satisfied then 

the list [tu] and [td] is appended with additional elements corresponding to 

the virtual probe i.e., tu=tGE-tff; td=tGE, where tGE is the time corresponding 

to the end of signal green interval.  

Step 3 Points through which U(t) should pass are defined (Section 3.3.4).  
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Step 4 U(t) is redefined by a) first vertical scaling and shifting the plots so that it passes 

through the above defined points (Step 3) and b) thereafter, making sure that the 

constrain in the cumulative plots (equation (3.10)) are satisfied (Section 3.3.5). 

Step 5 Finally, for each estimation interval, average travel time is estimated using 

classical analytical procedure (Average travel time is the ratio of the area between 

the plots and number of vehicles departing.).  
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Figure 3-5: CUPRITE basic architecture. 

3.3.4 How to define the points from where U(t) should pass? 

Say, we have n probe vehicles and the database for the probe is defined as list of [tu] and list of [td] 

where the size of each list is n. The value of jth element in the list represents the data from the jth probe. 

These lists are appended with additional elements satisfying the conditions for virtual probe (Section 

3.3.2.1). If the conditions are satisfied, then tGE is appended to the list [td]; and (tGE - tff) is appended to 

the list [tu].  
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3.3.4.1 Grid technique 

Consider an example, in Figure 3-6a, where have four probes fixed to D(t). The U(t) should pass 

within the region satisfying the following constrain (Refer to the rectangular region in Figure 3-6a) 

 min[ ] max[ ]
u u

probes probes

t t t  (3.5) 

 min[ ( )] max[ ( )]
d d

probes probes

D t counts D t  (3.6) 

We can define a grid with rows corresponding to D(td) and columns corresponding to tu within the 

above region (Refer to Figure 3-6b).If U(t) passes through the diagonal nodes of the above grid then 

∑∆t = 0 is satisfied. Therefore, the required points to pass are the diagonal nodes of the grid and can 

be obtained from the following algorithm: 

Step 6 Sort list [td] in ascending order of its values. This is required as the rank of the 

probe is defined considering D(t). 

Step 7 Sort list [tu] in ascending order of its values. This is required to make sure that the 

redefined U(t) is monotonically increasing and satisfies the property of ∑∆t = 0. 

Step 8 The required points through which U(t) should pass are (tuj, D(tdj)); where tuj and 

tdj are jth value in the sorted list of [tu] and [td], respectively. 

Say, we have n probe vehicles and the database for the probe is defined as list of [tu] and list of [td] 

where the size of each list is n. The value of jth element in the list represents the data from the jth probe.  
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Figure 3-6: Points from where U(t) should pass. 

3.3.5 How to redefine U(t)? 

U(t) is redefined by:  

i. First, integrating it with probe data by applying vertical scaling and shifting technique 

(Section 3.3.5.2); and 

ii. Finally making sure that constrain in the cumulative plots are satisfied (Section 3.3.5.3) 

3.3.5.1 Reference points 

U(t) and D(t) are initially two independent cumulative plots. When the traffic condition is free-flow 

(for instance during night) then counts for cumulative plots can be initialized to zero. This is the initial 

reference point (P0). Say [P1, P2, P3, …, Pn] is the list of n points from where U(t) should pass then for 

redefining U(t) for point Pi, the reference point is Pi-1. 
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3.3.5.2 Vertical scaling and shifting technique 

The information from the probe is utilized to define points through which U(t) should pass. Say, we 

have: a) a reference point (tRef, U(tRef)), i.e., the point in which we have confidence that it is a correct 

point on the plot; and b) point (tp, Yp) through which U(t) should pass. Then, (Refer to equations (3.7), 

(3.8) and (3.9); see Figure 3-7) we redefine U(t) by applying correction on it such that all points on the 

plot:  

i. Before time tRef have no correction; 

ii. Between tRef to tp are scaled vertically; and 

iii. Beyond tp are shifted vertically so that the redefined curve is parallel to U(t) and is 

continuous with the points before time tp. 

 ( ) ( )U t U t Correction  (3.7) 

 R ef

R ef

0

( 1) * ( ( ) ( ) )

( 1) * ( ( ) ( ))

Ref

Ref p

p p

t t

C orrection scale U t U t t t t

scale U t U t t t

 (3.8) 

 

Ref

Ref

Ref

Ref

( )
( ) ( )

( ) ( )

1 ( ) ( )

p

p

p

p

Y U t
if U t U t

U t U tscale

if U t U t

 (3.9) 
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Figure 3-7: Redefining U(t) based on vertical scaling and shifting technique. 

The concept behind above vertical scaling and shifting of the U(t) can be explained by an example. 

Refer to Figure 3-8a, has seven vehicles (A to G) detected at upstream (U(t)) and two of them (C and 

D) are for mid-link sink therefore, at downstream (D(t)) only five vehicles are detected. For simplicity 

assuming FIFO discipline. The rank of vehicles E, F and G are 5, 6 and 7 at U(t) and the 3, 4 and 5 at 

D(t), respectively. The presence of mid-link sink or mid-link source or detector counting error, only 

affects the rank of the vehicle in the plots which results in RD. In Figure 3-8b, the information for 

departing vehicle is fixed to D(t) and thereafter U(t) is redefined. Before point B there is no change; 

between B and E it is scaled vertically; and after E it is shifted vertically. The vertical distance defines 

the magnitude of RD; hence the correction is applied only on the vertical axis (Cumulative counts) and 

not on the horizontal axis (Time). 

The slope of the cumulative plot defines traffic flow. During signal red phase there is no flow and 

slope of the plot is zero (flat shape). The flat shape during signal red phase is conserved after vertical 
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scaling and shifting. However, if horizontal shifting was made then the flat shape during signal red 

phase is not conserved.  
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Figure 3-8: Concept of vertical scaling and shifting technique. 

To define the points from where U(t) should pass, CUPRITE considers the probe vehicle data. In 

addition, if conditions for virtual probe (defined in Section 3.3.2.1) are satisfied then the information 

is also incorporated to define the required points.  

3.3.5.3 Constrain in the cumulative plot 

Ideally, the counts at downstream (D(t)) should not exceed the expected demand (U(t-tff)) at 

downstream. Here we are assuming that the downstream cumulative plot is accurate and we redefine 

upstream cumulative plot, therefore we define the following constrain (3.10) (A lower bound for 

U(t).). 
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 ( ) ( )
ff

U t t D t  (3.10) 

Where, Δ is a calibration parameter.  

If for an estimation interval, a virtual or real probe is used then equation (3.10) will definitely be 

satisfied. However, if virtual or real probe is not used then there are scenarios where the equation 

(3.10) is not satisfied. For instance: 

i. Downstream intersection is oversaturated: and upstream detector is undercounting or 

there is presence of mid-link source; 

ii. Downstream intersection is undersaturated and downstream detector is overcounting.  

If the equation (3.10) is not satisfied, then we redefine U(t) such that: 

 

( ) ( )

( ) ( )

GE ff GE
if U t t D t

thenU t U t C orrection  (3.11) 

 R ef

R ef

0

( 1) * ( ( ) ( ) )

( 1) * ( ( ) ( ))
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p G E ff

t t

C orrection scale U t U t t t t t

scale U t U t t t t

 (3.12) 
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( ) ( )
( ) ( )

( ) ( )

1 ( ) ( )

G E

G E ff

G E ff

G E ff

D t U t
if U t t U t

U t t U tscale

if U t t U t

 (3.13) 

Where tRef is the time corresponding to the last ―point-to-pass‖ defined using virtual or real probe.  

The above correction is analogous to defining a virtual probe when equation (3.10) is not satisfied. If 

we define tp = tGE-tff and YP = D(tGE), then the equations (3.8) and (3.9)  is same as the equations (3.12) 

and (3.13), respectively. 

The rational for virtual probe is that during undersaturated traffic condition, the last vehicle departing 

at end of green phase should have travel time close to free-flow travel time of the link. Virtual probe is 

applicable even if equation (3.10) is satisfied (For instance, if upstream is overcounting or there is 

mid-link sink, then during undersaturated traffic conditions equation (3.10) should be satisfied.) 

whereas, the above correction is only applied when equation (3.10) is not satisfied. It only checks the 

lower bound for the U(t).  

CUPRITE can be applied both online and offline. For online, the cumulative plots are generated in real 

time and travel time is estimated which captures the most recent travel time for real time applications. 

Whereas, for offline the plots are generated with the complete set of inputs and travel time is estimated 

for each estimation interval. Offline application includes development of accurate database for 

historical travel time. The database can be used by the operators to analyze the performance of the 

network. Note: the basic algorithm, as developed in this section, is the same for both online and offline 

applications. However, for online application as the plot is defined in real time therefore, the accuracy 

of the previously defined points from where the curve should pass is also checked.  

3.4 Online and Offline application 

―In computer science, an online algorithm is the one that processes its inputs piece-by-piece without 

having the entire input available from the start. In contrast, an offline algorithm is given the whole 

problem data from the beginning and is required to output an answer which solves the problem at 

hand.‖ 
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Source: Wikipedia (http://en.wikipedia.org/wiki/Online_algorithm)  

Here, the problem to solve is: ―how to define the points from where U(t) should pass?‖ Input are 

cumulative plots -U(t) and D(t); and probe data- list of [tu] and [td]. 

Online application: Say we are interested to know the average travel time for all the vehicles that 

depart downstream during the last five minutes interval. And we need to update this information after 

each five minutes. For instance, the information is required at 7:00, 7:05, 7:10…. For this, cumulative 

plots are estimated piece-by-piece based on the data available until the end of current time interval.  

In Figure 3-9, the points from where the curve should pass are defined based on the data available till 

the current time tc.  

i. In Figure 3-9a, tc = t1. Three points P1, P2 and P3 are defined and redefined 

cumulative plots at upstream (U1(t)) is also presented. Here P3 corresponds to time tu3.  

ii. In Figure 3-9b, tc = t2. The data indicates that third and fourth probe are in non-FIFO 

discipline due to which the point P3 defined earlier (in Figure 3-9a) is corrected and 

now P3 corresponds to time tu4. The curve U2(t) is considered for online travel time 

estimation for the current estimation interval illustrated in the Figure 3-9b . 

http://en.wikipedia.org/wiki/Online_algorithm
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Figure 3-9: Example for defining the points from where the U(t) should pass for online 
application: a) at time t1; b) at time t2. 

Offline application: Say at the end of the day a traffic operator is interested to know how the network 

had performed during the day. In this case, detector counts and probe data for the complete day are 

utilized to define the cumulative plots.  

Let us consider an example. Figure 3-10 represents the cumulative plots (U(t) and D(t)) estimated till 

the current time (tc) indicated in the figure. The plots are for a 10% sink case. Actual cumulative plots 

are the accurate cumulative plots to be used for travel time estimation. They are obtained from 
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individual simulated vehicles traversing the complete link. In Figure 3-10 a, b and c are for online 

application and d is for offline.  

i. Figure 3-10a: tc = 7:18:00. Traffic condition is undersaturated therefore, virtual probe 

is used and we can see that redefined U(t) is close to actual U(t). 

ii. Figure 3-10b: tc = 7:24:00. Oversaturated traffic condition with no probe data. There is 

a deviation in redefined U(t) from that of actual U(t). (Refer zoomed portion of the 

figure).  

iii. Figure 3-10c: tc = 7:30:00. Oversaturated traffic condition with probe data. Here, there 

are actually two probes observed at upstream, but only one of them has departed from 

the downstream. Therefore, for the current period only the first probe is considered to 

redefine U(t). Note: as U(t) is redefined, the error in the previous estimation interval 

(7:18:00 to 7:24:00) is also corrected (Refer zoomed portion of the figure). For online 

application to estimate travel time for estimation interval from 7:18:00 to 7:24:00, the 

plots represented in Figure 3-10b are considered. However, if time series modeling is 

to be performed and one is interested in time series of travel time then the errors 

performed in the previous intervals can be corrected.  

iv. Figure 3-10d, is an example for offline estimation. U(t) is redefined with all the probes 

and travel time for each estimation intervals are estimated. It can be seen that redefined 

U(t) is close to actual U(t) hence, offline estimation should have better accuracy than 

that of online.  
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Figure 3-10: Example for online and offline applications.  
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3.5 CUPRITE testing 

The architecture for CUPRITE testing is provided in Figure 3-11. Detector and signal controller data 

are input to CUPRITE. The required probes are randomly selected from individual simulated vehicle 

data.  

Estimated 

average  

travel timeAIMSUN 

simulation 

model

Individual vehicle 

data 

AIMSUN API 

CUPRITE

Actual 

average  

travel time

Detector data 

Signal controller

Performance evaluationProbe

 
 

Figure 3-11: Architecture for CUPRITE testing using AIMSUN. 

3.5.1 Performance indicators 

The performance of CUPRITE is evaluated terms of: 

i. Accuracy (Section 3.5.1.1). 

ii. Sensitivity with respect to number of probes (Section 3.5.1.2). 

iii. Comparing with Probe-Only method (Section 3.5.1.3). 

iv. Comparing with HCM 2000 model during undersaturated traffic conditions (Section 

3.5.1.4).  

3.5.1.1 CUPRITE estimation accuracy 

Following two different accuracy indicators are considered:  

i.  AM: (3.17) Accuracy defined in terms of Mean Absolute Percentage Error (MAPE 

(3.16)) which is most common performance statistic indicator used in literature. It 

indicates the overall average CUPRITE performance.  

ii.  A5: (3.19) Accuracy defined in terms of 95th percentile of errors (Error95th (3.18)) 

obtained from each estimation interval. This indicator also covers the confidence in the 

estimate i.e., 95% of the times the observed accuracies should be higher than or equal 

A5. 

 
i i

i

i

actual - estimated
Error = ( )

actual
 (3.14) 

 i iAccuracy = (1 - Error )* 100  (3.15) 

 

i

i = 1 to N

Error

M APE =
N

 (3.16) 

 MA (%) = (1 - MAPE )* 100  (3.17) 
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 95 th
iErro r 95 th percentile of Error for i =0 to N  (3.18) 

 95 th
5A (% ) = (1 - Erro r )* 100  (3.19) 

Where, N is the total number of estimation intervals. Actuali, estimatedi, Errori, and Accuracyi are the 

average actual travel time, average estimated travel time, absolute relative error and accuracy for ith 

estimation interval, respectively.  

3.5.1.2 CUPRITE sensitivity (Sn and Sp) with respect to number of 

probes 

The performance of CUPRITE is evaluates for minimum number of probes required for accurate travel 

time estimation as: 

i. Sn: Fixed number, Sn, of probe vehicles during each estimation interval.  

ii. Sp: Fixed percentage, Sp, of all vehicles traversing the link as probe vehicles. This 

percentage is a proxy for the market penetration of probes in vehicles traversing the 

link during certain time periods.  

3.5.1.3 CUPRITE comparison with “Probe-Only” method 

While presenting the results, comparison of CUPRITE with model solely based on probe data here 

referred as Probe-Only is also provided. Probe-Only (3.20) method assumes that probe represents a 

random sample from all the vehicles (population) and average of the travel time from the probes (ti) is 

the representative of the population, given that the sample size (np) is at least a minimum value.  

 
1

; 1 ( m ethod)

pn

i

i

p

p

t

Average travel tim e n Probe - O nly
n

 (3.20) 

3.5.1.4 CUPRITE comparison with Highway Capacity Manual 2000 

during undersaturated traffic conditions 

Travel time (TT) can be simply defined as sum of free-flow travel time (tff) and average control delay 

per vehicle (d) (3.21). We expect that during undersaturated traffic condition, a standard delay formula 

such as, Highway Capacity Manual 2000 (HCM 2000) should provide good estimate of travel time. 

Equation (2.22) is the delay formula defined in HCM 2000 (Refer to Section 2.2.2.2.2 for discussion 

on HCM 2000 method).  

 ff
TT t d  (3.21) 

In the present analysis following parameters are considered (Refer to equation (2.22) to equation 

(2.27) for parameter definition): 

C = 120 s; 

g = 30 s;  

PF =0.7735 is considered. Refer to Exhibit 16-12 of HCM 2000 for: g/C = 0.25 and the highly 

favorable progression quality (arrival type 5 defined in Exhibit 16-11.); 

c = s*g/C = (0.533*2*30/120*3600 = 960 veh/h); where s is saturation flow rate 

(=0.533*number of lanes); 
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T = 3*120/3600 = 0.1 h; 

X = v/c. Vehicle flow rate (v) is obtained from the downstream stop-line detector counts. The 

flow rate during each estimation interval is the detector counts during the estimation 

interval divided by the time length of the estimation interval; 

k = 0.5 for fixed signal as defined in HCM 2000; 

Xu: the degree of saturation at upstream intersection. It is approximated as v/c ratio of 

upstream through movement. Here, it is obtained from the detector counts at upstream 

intersection; 

Qb: initial queue at start of period T (vehicle). Here, the analysis is for undersaturated traffic 

condition; and start of each travel time estimation interval is end of signal green phase. 

Therefore, Qb can be assumed to be zero. As Qb = 0 therefore, d3 = 0. Note: for 

oversaturated traffic Qb is positive and is difficult to estimate, hence here HCM is not 

applied for oversaturated traffic condition; 

t:  the duration of unmet demand in T (hour). Here, Qb=0 therefore this value is not 

required; 

u: the delay parameter. Here, Qb = 0 therefore this value is not required. 

The delay defined by HCM 2000 is the delay experienced by all vehicles that arrive during the 

analysis period. The travel time we estimate using CUPRITE is for all vehicles that depart during the 

analysis period (travel time estimation interval). Here, the analysis is performed for undersaturated 

traffic condition so queue should vanish at end of each signal cycle. The analysis period is integer 

multiple (three times) of signal cycles with fixed signal parameters. Therefore, the vehicles arriving 

and departing during the analysis period must be same. Hence, travel time estimates from CUPRITE 

can be compared with that from HCM 2000. 

3.5.2 Framework for CUPRITE testing 

CUPRITE is tested thoroughly for: a) different traffic flow conditions (undersaturated and 

oversaturated); and b) potential causes of RD (sink/source/detector error). In Figure 3-12, the 

framework for CUPRITE testing is illustrated. In this chapter, CUPRITE is tested for travel time 

estimation between two consecutive intersections (single link). In the next chapter (Chapter 4), the 

application of CUPRITE for route travel time estimation is discussed followed by its testing on 

multiple links route.  

For oversaturated traffic condition, sensitivity in terms of Sn and Sp is performed. For undersaturated 

traffic condition only Sn is considered. As virtual probe can be defined only for undersaturated traffic 

flow condition therefore, for such traffic condition the importance of the virtual probe is also 

demonstrated through following cases:  

i. Case R: Here, Sn, number of real probes is considered and virtual probe is not 

considered. Sn≥1 because we are considering real probes only. 

ii. Case V+R: Here, if the conditions for virtual probe are satisfied, then virtual probe is 

considered in addition to, Sn, number of real probes. Sn=0 corresponds to situation 

when only virtual probe is considered. Similarly, Sn = 1, indicates that one real probe in 

addition to virtual probe is considered. 

Table 3-1 and Table 3-2 present different combinations of cases tested for undersaturated and 

oversaturated traffic condition, respectively. 

Probe information is only available when it has departed the downstream intersection. Hence, the 

results for online and offline applications are also differentiated.  
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Figure 3-12: Framework for CUPRITE testing.  
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Table 3-1: Different cases considered for CUPRITE testing for undersaturated traffic flow 
conditions (↑: detector overcounting; ↓: detector undercounting) 

Case 

Study 

Discipline 

(FIFO/non

-FIFO) 

Sink 

(%) 

Source 

(%) 

Detector Error (%) Comments 

Upstream Downstream 

↑ ↓ ↑ ↓

A1 Both 10      Model performance for FIFO 

and non-FIFO discipline. 

(Virtual Probe Only) 

A2.1 Non-FIFO 10      Virtual probe is not considered. 

Results presented for scenarios 

with at least one real probe in 

each estimation interval. 

(Case: R) 

A2.2  10     

A2.3   10    

A2.4    10   

A2.5     10  

A2.6      10 

A3.1 10      Both virtual and real probe are 

considered.  

(Case: V + R) 
A3.2  10     

A3.3   10    

A3.4    10   

A3.5     10  

A3.6      10 
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Table 3-2: Different cases considered for CUPRITE testing during oversaturated traffic condition 
(↑: detector overcounting; ↓: detector undercounting) 

Case 

Study 

Discipline 

(FIFO/non

-FIFO) 

Sink 

(%) 

Source 

(%) 

Detector Error ((%) Comments 

Upstream Downstream 

↑ ↓ ↑ ↓

B1 Both 10      Model performance for FIFO 

and non-FIFO results. 

B2.1 non-FIFO 5, 

10, 

15, 

20 

     Provides comparative 

overview of model 

performance for different 

independent sink and source 

percentages.  

(non-FIFO discipline) 
B2.2  5, 10, 

15, 20 

    

B3.1   10    Analyses the impact of 

detector error. 

(non-FIFO discipline) 
B3.2    10   

B3.3     10  

B3.4      10 

B4.1 20 10     Net:10 

Source 

Analyses the 

impact of net 

effective 

relative 

deviation due to 

mid-link sink 

and sources, 

and detector 

error. 

(non-FIFO 

discipline) 

B4.2 10 20     Net:10 Sink 

B4.3 10 10     Net: 0 

B4.4 20 20     Net: 0 

B4.5 50 50     Net: 0 

B4.6 90 90     Net: 0 

B4.7 10 10  10  10 Net: 0 

B4.8 10 10 10  10  Net: 0 

Note: Case B4.3 to B4.6 are analogous to travel time estimation on multiple links route using cumulative 

plot at upstream and downstream of the route. Case B4.3 and B4.4 are analogous to a route with major 

road; Case B4.5 and B4.6 are analogous to a route with minor road 

3.5.3 Definition of  sink and source percentage 

Sink percentage is defined as the ratio of vehicles lost in the sink to the vehicles observed at upstream. 

Source percentage is defined as the ratio of vehicles gained from the source to the vehicles departing 
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from downstream (Figure 3-13). In the present analysis 5%, 10%, 15% and 20% of sink and source are 

considered.  

L

Mid-link Sink

u/s

d/s

U D

G

Mid-link Source

u/s

d/s

D

D = U-L

D = U + G

% Loss= L/U

% Gain= G/D

U

 
 

Figure 3-13: Definition of percentage loss to mid-link sink and percentage gain from mid-link 
source. 

3.5.4 Single link testing  

The aim here is to test the performance of CUPRITE with respect to RD. Therefore, CUPRITE is 

applied on a link between two consecutive signalized intersections (similar to the network illustrated 

in Figure 3-14). The testing of CUPRITE on a single link is the foundation for further CUPRITE 

applications such as route travel time (discussed in Chapter 4).  

Two different networks, one with single lane link and another with double lane link, are considered. 

Traffic flow on a single lane link follows FIFO queueing discipline. Testing CUPRITE on FIFO 

discipline defines the maximum accuracy that can be obtained and hence demonstrates the potential of 

CUPRITE. Traffic flow on double lane link follows non-FIFO queueing discipline and is better 

representative of the real world.  

The flow is from three different directions at upstream intersection (see Figure 3-14). Only through 

movement at downstream intersection is considered. Bottleneck is at downstream intersection. 

Vehicles for the mid-link sink/source are random vehicles traversing the network. 
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Stop-line detector

Study link

  

  

  

 
 

Figure 3-14: Test bed for model testing on a single link between two consecutive signalized 
intersections.  

The results presented here are from the simulations with:  

i. Signal cycle time (C) of 120 s; green split (g/C) for through movement at downstream 

intersection are 0.5 and 0.25 for single lane FIFO network and double lanes non-FIFO 

network, respectively. Signal parameters define the shape of the cumulative plot. 

ii. Scenarios for different degree of saturation (X) in the range of 0.5 to 1.2 at downstream 

intersection.  

iii. Average travel time estimation interval (TEI) of 360 s i.e. three times of signal cycle 

time.  

In the following sections, the performance for undersaturated and oversaturated traffic conditions is 

separately presented. 

3.5.4.1 Undersaturated traffic condition 

Here first the result for use of virtual probe for FIFO and non-FIFO networks is presented, followed by 

comparative overview of different undersaturated (0.5 ≤ X < 1) cases for non-FIFO network.  

3.5.4.1.1 Virtual probe for FIFO and non FIFO networks 

Figure 3-15 represents the data from simulation with no real probe consideration from 10% mid-link 

sink case. Virtual probe is defined for undersaturated traffic condition resulting in consistent accuracy 

of more than 97% for both FIFO and non-FIFO networks. The graph also differentiates the accuracies 

obtained for three different traffic conditions: a) non-congested (undersaturated); b) shoulder 

(congestion build-up and dissipation); and c) congested (oversaturated). In the present analysis travel 

time estimation interval is three signal cycle. Therefore, an estimation interval can have a maximum of 

three virtual probes, each corresponding to the end of each signal green phase. For undersaturated 

traffic condition the number of virtual probes per estimation interval should be three. During 

congestion build-up and dissipation process there are estimation intervals with either one or two 
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virtual probes. For oversaturated traffic condition there should not be any virtual probe. This means 

that during congestion build-up and dissipation process RD can be partially corrected and during 

congested situation there is no correction applied resulting in low accuracy in the latter case.  
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Figure 3-15: Simulation for different traffic flow conditions with no real probe: a) FIFO network 
and b) non-FIFO network. (Case A1). 
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3.5.4.1.2 Comparative overview of different undersaturated cases for 

non-FIFO  

Here, first the results for Case R and its comparison with Probe-Only are presented followed by results 

for Case V+R and its comparison with HCM. The results of the graphs for 10% sink case (A2.1 and 

A3.1) and 10% downstream detector overcounting (A2.5 and A3.5) are illustrated in this chapter. The 

graphs for the other cases are in Appendix C  (Figure C-1 to Figure C-4). 

 Case R and comparison with Probe-Only 

For case R (case A2.1 to case A2.6), where virtual probes are not considered, the accuracy of 

CUPRITE increases with increase in Sn and is consistent with all the cases (see Figure 3-16 and Figure 

3-17; and Figure C-1 to Figure C-4). If Sn is small (only one or two probes) then there is significant 

benefit of integrating cumulative plots with probe vehicle data. For instance for Sn = 1 the CUPRITE 

estimates are higher than Probe-Only by around 15% in A5 accuracy and 5% in AM accuracy. Though, 

not much benefit if Sn is large. This is because large number of probes per estimation interval is good 

representative of all the vehicles in the estimation interval.  

 Case V+R and comparison with HCM 

Case V+R 

In all the cases (case A3.1 to case A3.6), it is observed that consideration of only virtual probe (Sn = 0) 

is most accurate. In fact, the consideration of real probes in addition to virtual probes generally 

decreases the accuracy by 3%. The reason for which is explained below. 

The correction based only on virtual probe assumes uniform relative deviation throughout the signal 

cycle. Hence, after the vertical scaling, general shape of the upstream cumulative plot is preserved 

(i.e., there is no distortion). The magnitude of relative deviation is random and it can result in 

overestimation, underestimation or perfect estimation. Therefore, the assumption of uniform relative 

deviation can result in effective balance of the relative deviation values.  

The consideration of real probe requires fixing the probe with downstream cumulative plot. The error 

in the estimation of downstream cumulative plot can result in wrong estimation of rank of the probe 

vehicle in the cumulative plot. Moreover, non-FIFO queueing discipline does not necessarily 

guarantee the conservation of rank at upstream cumulative plot. Resulting in distortion in the general 

shape of the upstream cumulative plot and hence lower accuracy compared to case with only virtual 

probe.  

The above explanation is supplemented with the following example. Figure 3-18 represents an 

example from a scenario from 10% sink case (case A3.1). The dots in the figure correspond to the 

vehicles observed at both upstream and downstream. In the figure: D(t) is downstream cumulative 

plot; U0(t) observed cumulative plot at upstream; Ur(t) is redefined upstream cumulative plot, defined 

from the vehicles traversing the complete link. In Figure 3-18b, virtual probes are considered and 

Ur1(t), redefined cumulative plots considering the virtual probe, is obtained. The shaded area in the 

figure represents the overestimation and underestimation of travel time. It can be seen that Ur1(t) is 

close to Ur(t) and error is low, i.e., overestimation and underestimation balance each other. In Figure 

3-18c real probe is considered in addition to virtual probe, and the redefined cumulative plot Ur2(t) is 

presented. It can be seen that Ur2(t) is quite far away from Ur(t), and there is overestimation of travel 

time. However, the real probe considered in Figure 3-18d, provides better estimates. Thus, the 

consideration of real probe can sometimes provide better estimates and sometimes can provide worse 

estimate compared to that of scenarios where only virtual probe is considered.  

Most of the time, the consideration of real probes (Sn≥1) has lower accuracy than from only virtual 

probe case (Sn=0). In Figure 3-20, the accuracies from Sn≥1 versus Sn=0 are presented (The values are 
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from 10% sink case.). It can be seen that most of points are below the 45° line, indicating that most of 

the time Sn=0 have better accuracy. Figure 3-20a and Figure 3-20b define the frequency distribution 

for three cases, where A5 accuracy for Sn = 0 is: more than; close to; or less than, that for case with at 

least one real probe (Sn = 1or Sn = 2). Note: ―close to‖ means the absolute difference of the accuracies 

is less than or equal to 0.1%; ―more than‖ means the difference is more than 0.1%; and ―less than‖ 

means the difference is less than 0.1%. It can be seen that A5(Sn = 0) > A5(Sn = 1) and 

A5(Sn = 0) > A5(Sn = 2) are most frequent.  

It is observed that overcounting of downstream detector further decreases the accuracy from 

CUPRITE. Refer to case V+R in Figure 3-17 for Sn = 0: AM = 97.8% and Sn = 1: AM = 95%. Detector 

overcounting results in overestimation of degree of saturation. In the case A3.5 approximately 25% of 

the undersaturated estimation intervals are falsely considered as oversaturated due to overcounting at 

downstream and hence in these intervals virtual probe is not defined. These 25% of the cases are 

actually equivalent to Case R that accounts for the drop in accuracy.  

Note: Here Sn=0 has better accuracy even if virtual probe is not defined for 25% of the cases. This is 

because, in such situations the constrains in the cumulative plots are generally not satisfied, and while 

redefining U(t) we make sure that the constrains are satisfied resulting in better estimates (Refer to 

Section 3.3.5.3).  

Comparison with HCM 2000 

HCM 2000 method is independent of the number of probes per estimation interval. Here, we use 

calibrated HCM (with PF =0.7735, k =0.5) which provides best estimates for travel time. It makes 

sense if we compare HCM with Case V+R, as the application of HCM assumes that there is no 

mid-link intersections; on-street bus stops etc. i.e., situations identical to conditions for virtual probe 

(Refer to section 3.3.2). The performance of HCM (see Figure 3-16 and Figure 3-17; and Figure C-1 

to Figure C-4) is generally good with A5 > 90% and AM > 95% and is only slightly lower than 

CUPRITE (with consideration of virtual probe).  

The delay from HCM depends on the estimates of degree of saturation. Here, degree of saturation is 

estimated based on the detector counts. The error in the detector counts results in wrong estimate for 

degree of saturation. Overcounting and undercounting by detector results in overestimation and 

underestimation of the degree of saturation, respectively.  

Figure 3-21 illustrates HCM delay estimates using equations (2.22) to (2.25). The slope of the curve is 

the rate of change in delay with respect to degree of saturation. The curve is monotonically increasing 

with rather gentle slope for low degree of saturation and steep slope once traffic becomes congested. 

Detector overcounting can result in higher error in travel time estimation than detector undercounting. 

For instance, (see Figure 3-21) for X= 0.9, 10% overcounting results in 6 s error in delay whereas, 

10% undercounting results in 3.5 s error in delay estimation. This is confirmed by the results obtained 

from the case studies on overcounting (see Figure 3-17). Comparing with other cases, HCM accuracy 

is lowest for overcounting case (case A3.5). For instance, the A5 accuracy from HCM for overcounting 

case is 86.7% whereas from undercounting case is 94.1%. The AM accuracy is 94.2% and 97.2%, 

respectively.  

Note: The error in estimation of degree of saturation during oversaturated traffic condition can result 

in significant error in delay estimates from HCM. For instance (see Figure 3-21) 10% overestimation 

in degree of saturation at X=1.05 can result in 13.6 s error in the delay estimate.  



3 Methodology development and testing 

 
69 

 

 

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 2 4 6 8 10 12 14 16 18 20

A
5

(%
) 

=
 1

-9
5

th
p

e
rc

e
n

ti
le

 o
f
 a

b
s(

E
rr

o
r)

Number of  probes per estimation interval (Sn)

86%

88%

90%

92%

94%

96%

98%

100%

0 2 4 6 8 10 12 14 16 18 20

A
M

(%
) 

=
 1

-M
A

P
E

Number of  probes per estimation interval (Sn)
 

CUPRITE Offline/Online (Case V+R) 

HCM 2000 

Probe-Only 

CUPRITE Offline/Online (Case R) 

(a) 

(b) 

Case Study : A2.1 and A3.1 (10% Sink) Undersaturated traffic 

CUPRITE only virtual probe (Sn=0) 

CUPRITE Offline/Online (Case V+R) 

HCM 2000 

Probe-Only 

CUPRITE Offline/ Online (Case R) 

CUPRITE only virtual probe (Sn=0) 

 

Figure 3-16: Comparative results for 10% mid-link sink case during undersaturated traffic 
condition. (a) Results for accuracy: A5 and (b) Results for accuracy: AM.  
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Figure 3-17: Comparative results for 10% downstream detector overcounting case during 
undersaturated traffic condition. Results for accuracy :(a) A5 and (b) AM.  
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Figure 3-18: An example from 10 % mid-link sink case with different probe consideration.  
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Figure 3-19: Accuracy estimates (A5) from V+R case with Sn= 1, 2 and 3 probes versus Sn= 0 from 
10% mid-link sink (case A3.1). 
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Figure 3-20: Case with 10% mid-link sink (case A3.1): a) and b) are frequency distribution of the 
accuracies (A5) for different scenarios where estimates from only virtual probes are better than, 
close to or less than those from virtual and real probes.  
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Figure 3-21: HCM 2000 delay versus degree of saturation at downstream intersection.  

If the delay is mainly from the signal control at intersection then travel time estimates during 

undersaturated traffic condition with fixed signal controller can be satisfactorily obtained from HCM 

2000 method by defining its parameters from stop-line detector counts. The application of CUPRITE 

slightly improves the accuracy, though not much benefit. However, the application of CUPRTIRE 

during undersaturated traffic condition maintains consistency in the travel time estimation 

methodology for both undersaturated and oversaturated traffic conditions.  

If virtual probe is not considered and less number of real probes are available then CUPRITE 

guarantees better estimates than that from Probe-Only.  

For oversaturated condition virtual probe does not exist, and only real probes are considered as 

discussed in next section. 

3.5.4.2 Oversaturated traffic condition 

Here, the results of the simulation for scenarios with 1 ≤ X ≤ 1.2 are presented in following order: 

i. Discussion on fixed number of probes per estimation interval (Sn)  

a. 10% sink, both FIFO and non-FIFO networks (Case B1). 

b. Comparative results for different sink and source percentage (Case B2.1 and 

case B2.2). 

c. Detector counting error (Cases B3.1, B3.2, B3.3 and B3.4). 

d. Simultaneous presence of different sources of RD (Case B4.1 to case B4.9). 

e. Discussion on reliability of estimates. 

ii. Discussion on percentage of vehicles traversing as probe (Sp). 
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3.5.4.2.1 Fixed number of probes per estimation interval (Sn) 

 10 per cent sink both FIFO and non-FIFO networks (Case B1) 

The result for FIFO is illustrated in Figure C-5 and for non-FIFO is illustrated in Figure 3-22. It is 

observed that: 

i. The performance of CUPRITE with at least one probe per estimation interval with 

respect to: a) AM accuracy is close to 98% and 95% for FIFO and non-FIFO networks, 

respectively; and b) A5 accuracy is close to 95% and 90% for FIFO and non-FIFO 

networks, respectively. This demonstrates that on an average CUPRITE estimate is 

more than 95% accurate; and 95 percent of the time the accuracy is more than 90%.  

ii. If we have only a few probes per estimation interval (Sn < 5) then there is significant 

benefit of integrating probes with cumulative plots. If the number of probes per 

estimation interval is large (Sn > 10) then the probes are good representative of the 

population of the vehicles and there is little benefit of integrating probes with 

cumulative plots.  

iii. As expected, offline application performs better than online application. The difference 

is mainly when Sn = 1 or Sn = 2.  

iv. Accuracy increases with increase in number of probes for both CUPRITE and Probe-

Only.  
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Figure 3-22: Case B1 (10% sink) oversaturated traffic condition for non-FIFO discipline. Results 
for accuracy: a) A5 and b) AM versus Sn.  
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 Comparative results (Case B2.1 and case B2.2) 

Figure 3-23 and Figure 3-24 illustrate comparative results of the accuracy versus Sn for non-FIFO 

network under 5%, 10%, 15% and 20% sink cases (case B2.1) for CUPRITE offline and online 

application, respectively. The result for different source percentages (case B2.2) is illustrated in Figure 

C-6 and Figure C-7. It can be observed that: 

i. For offline application with Sn = 1 (both sink and source case): The A5 accuracy ranges 

from 84.6% to 86.4% and AM accuracy ranges from 94.1% to 94.8%. Hence we can 

say that CUPRITE offline application is insensitive to the magnitude of mid-link 

source and sink.  

ii. For online application with Sn = 1 (both sink and source case): The A5 accuracy 

decreases with increase in the sink and source percentage, whereas, the decrease in AM 

accuracy is not much. The A5 accuracy ranges from 75.1% (20% sink) to 84.3% (5% 

sink) and AM accuracy ranges from 93.4% to 94.1%. However, if Sn > 1 then CUPRITE 

is insensitive to magnitude of mid-link source and sink.  

iii. For Probe-Only with Sn = 1 the A5 accuracy is around 60% and AM is around 85%.  

It can be concluded that CUPRITE average performance (AM) is insensitive to the mid-link source and 

sink percentage. Though for online application if percentage of sink is high then for Sn = 1, the A5 

accuracy ranges from 75.1% (20% sink) to 84.3% (5% sink) but still much higher than Probe-Only. 

For online application: If the probe departs at the start of the estimation interval then the relative 

deviation is corrected until the start of the estimation period. The relative deviation within the 

estimation period is not corrected. However, if the probe is the one that departs at the end of the 

estimation period, then the relative deviation for the complete estimation period is corrected. Thus 

depending on the position of probe within the estimation interval, the online estimation can vary from 

worse to best estimation and hence lowers A5 accuracy. As the magnitude of relative deviation 

depends on the sink/source percentage therefore, the drop in the accuracy also depends on the 

sink/source percentage. For Sn = 1 there is equal chances of probe to be in the first half or second half 

of the estimation interval. For Sn > 1, one can observe probes in both first half and second half of the 

estimation interval therefore with Sn > 1 there is generally insensitive to the magnitude of sink/source. 
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Figure 3-23: CUPRITE Offline application for different sink percentages (5%, 10%, 15% and 
20%); oversaturated traffic condition; non-FIFO discipline. Results for accuracy: a) A5 and b) AM 
versus Sn.   
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Case Study : B2.1 (5%,10%, 15% and 20% Sink) Oversaturated  
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Figure 3-24: CUPRITE Online application for different sink percentages (5%, 10%, 15% and 
20%); oversaturated traffic condition; non-FIFO discipline Results for accuracy: a) A5 and b) AM 
versus Sn. 
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 Detector counting error (Case study B3.1, B3.2, B3.3 and B3.4) 

Here CUPRITE is tested for 10% error in detector counting: upstream detector overcounting (case 

B3.1); upstream detector undercounting (case B3.2); downstream detector overcounting (case 

B3.3) and downstream detector undercounting (case B3.4). The results with respect to Sn are 

presented in Figure 3-25 and Figure C-8 for online and offline application, respectively. The 

accuracy for CUPRITE is close to 95% and 90% with respect to AM and A5, respectively. These 

results are consistent with that of 10% mid-link source and 10% mid-link sink case studies i.e., the 

effect of overcounting at downstream is equivalent to mid-link source; or the effect of 

undercounting at downstream is equivalent to mid-link sink etc. This confirms our hypothesis in 

section 3.2.2 that RD from detector counting error is analogous to that from mid-link sink/source 

case.  
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Figure 3-25: Detector counting error with fixed number of probes per estimation interval (Sn) for 
offline application: Cases B3. 1 to B3.4: Results for accuracy: a) A5 and b) AM versus Sn.   
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 Discussion on simultaneous presence of different sources of RD 

The above testing is for two independent conditions of sink, source, and detector counting error. A 

mid-link infrastructure can simultaneously act as both source and sink. For instance parking or two 

independent side streets, one acting as source and other acting as sink, etc.  

If the net loss of vehicles to sink and gain of vehicles from source is zero then the issue of RD should 

not exist. In practice, source and sink percentage are dynamic in nature and for a larger time period 

such as one hour or so they may balance each other. Nevertheless, for each travel time estimation 

interval the effect of RD exits and integration of probe vehicles with cumulative plots have potential to 

improve the accuracy.  

The above argument is supported through the following case studies: 

i. Net non-zero RD: Figure 3-26 represents the results from 20% sink and 10% source 

case. This results in effective 10% sink. The results are consistent with that obtained 

from 10% sink case. The A5 accuracy increases from 80% to 91% and AM accuracy 

increases from 93% to 96% with increase in Sn. Similar results are obtained for 10% 

sink and 20% sources (Refer to Figure C-10 ). 

ii. Zero RD: 10% sink and 10% source case. Figure 3-27 represents results from AM 

accuracy and A5 accuracy, respectively versus Sn. The performance of CUPRITE is 

consistent with A5 accuracy close to 96% with at least one probe per estimation 

interval. In the present case, of 10% sink and 10% source, the net RD during the 

simulation period is zero. However, the vehicle lost in sink and gained from the source 

are random (with exponential arrival distribution in the simulation settings) due to 

which for each estimation period there exists RD and hence the performance can be 

enhanced by consideration of real probe. Refer to improvement in accuracy from Sn = 0 

to Sn > 0. Similar results are obtained for: a) Case B4.4 20% sink and 20% source 

(Figure C-14); b) Case B4.5- 50% sink and 50% source (Figure C-15); c) Case B4.6- 

90% sink and 90% source (Figure C-16); d) Case B4.7- 10% sink, 10% source, both 

upstream and downstream detector undercounting by 10% (Figure C-17) ; and e) Case 

B4.8- 10% sink, 10% source, both upstream and downstream detectors overcounting 

by 10% (Figure C-18). 

Note: If the loss and gain of vehicles are uniform throughout the simulation then, the 

net RD is also zero for each estimation interval. During such condition, Sn = 0 should 

provide accurate results. Refer to Figure C-13 for results from uniform sink and source. 

There is slight decrease (by around 2%) in the accuracy when we move from Sn = 0 to 

one or two probes per estimation interval. This indicates that in absence of RD, there is 

significantly high accuracy during no probe condition. Then presence of one or two 

probes per estimation interval can induce slight error. However, for practical 

application it is unknown if the loss and gain of vehicles balance each other. 

Nevertheless, presence of probe vehicles provides confidence in the estimation.  
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Figure 3-26: Simultaneous presence of both sink and source. Case B4.1 (20% sink and 10% 
source). Results for accuracy: a) A5 and b) AM versus Sn.   
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Figure 3-27: Simultaneous presence of both sink and source. Case B4.3 (10% sink and 10% 
source). Results for accuracy: a) A5 and b) AM versus Sn.   
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 Reliability of the estimates  

Figure 3-28 represents standard deviations (ζ) of accuracies versus Sn for non-FIFO network. It can be 

said that higher the standard deviation, lower is the reliability of the accuracy estimate and vice versa. 

It is observed that the reliability of the CUPRITE increases (ζ decreases) with increase in Sn and 

CUPRITE is more reliable than Probe-Only. In fact, when we have only one or two probes, then 

estimates from Probe-Only is uncertain, it can vary from perfect to worst estimate. Hence, integration 

of cumulative plots and probe not only increases the robustness of the travel time estimates using 

cumulative plots but also overcomes the issue of uncertainty in the estimates from the use of probe 

vehicles.  
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Figure 3-28: Standard deviation of accuracy versus number of probes per estimation interval. 

3.5.4.2.2 Probe as percentage of all vehicles traversing the link (Sp) 

Here, a fixed (Sp) percent of the vehicles is randomly selected from all the vehicles traversing the link 

during the complete simulation period. There may be certain estimation intervals with no probe data. 

Figure 3-29 illustrates the frequency distribution of estimation interval versus Sn. The data is from 

10% sink case and non-FIFO network. It is observed that SP ≥ 5% can cover all the estimation 

intervals with Sn ≥ 1, whereas, for Sp ≤ 3% there can be significant number of estimation intervals with 

no probe (Sn = 0). For instance, SP = 1%, can have more than 30% of estimation intervals with no 

probe.  

Note: For Probe-Only (3.20) travel time cannot be estimated if there is no probe. Therefore, travel 

time for estimation interval with no probe is assumed to be equal to the travel time of the previous 

estimation interval with at least one probe.  
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Figure 3-29: Percentage of estimation intervals with different number of probes per interval. 

Figure 3-30 represents the results for 10% sink case (Case B1, non-FIFO) with probes as percentage of 

vehicles traversing the link. Each of the estimation interval considered may not have a probe. It is 

observed that: 

i. For offline application: The performance is consistent and A5 accuracy is more than 

86% and AM accuracy is more than 95%, respectively. As expected offline performs 

better than online. 

ii. For online application: there is increase in A5 accuracy from 70% to 86% for increase 

in probe from 0% to 3%. AM accuracy increases from 90% to 95% for increase in probe 

from 0% to 3%.   

iii. Accuracies for Probe-Only increases with increase in probe percentage. For low probe 

percentage (SP < 5%) significant large number of estimation intervals is with no probe 

or a few number of probes which accounts for low accuracy. Integration of probe with 

cumulative plots for low probe percentage significantly enhances the accuracy. As 

percentage of probe increases, the number of probes per estimation interval also 

increases resulting in better accuracy. For instance, SP = 15% probes generally provide 

Sn = 10. For such cases, probes are good representative of the population of the 

vehicles and there is little benefit of integrating probes with cumulative plots.  

The results consistent with the above are obtained for other cases. Refer to Figure C-11 and Figure 

C-12. It can be concluded that 3% of the vehicles traversing the link as probes have the potential to 

provide accurate travel time for online application. For offline application even 1% of probe can 

provide accurate results.   

The percentage of vehicles traversing as probes highly depends on the route, time of the day and day 

of the week. There are greater chances of obtaining probes on the link heavily traversed then on links 

with minor flow. The current market penetration of probe is very low and one does not expect more 
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than 3% to 4% of vehicles as probes on heavily traversed route. With this limited number of probes, 

CUPRITE can significantly enhance the accuracy of travel time estimates on urban network. 
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Figure 3-30: 10% sink case results for accuracy: a) A5 and b) AM versus Sp. 
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3.6 Concluding remarks 

The methodology, CUPRITE, developed and tested in this chapter provides encouraging results for 

travel time estimation by integrating data from different sources: detectors and signal controller data at 

different locations on the network and probe vehicles. The exhaustive testing of CUPRITE indicates 

that the integration of different data sources provides better performance than method based on single 

data source only. It overcomes the issue of relative deviation amongst cumulative plots and 

uncertainty of travel time estimates from a few probes (sample size of one or two vehicles). It can 

provide accurate travel time for successive estimation intervals for both offline and online applications. 

For undersaturated traffic condition, the concept of virtual probes is introduced and accurate estimates 

(Accuracy > 95%) can be obtained without consideration of real probe. It is observed that the use of 

real probes in addition to virtual probes can slightly decrease the accuracy by around 3% compared to 

the case when only virtual probe is considered. However, the real probe data is a real data and its use 

provides confidence in correction of relative deviation amongst the plots.  

For oversaturated traffic condition, real probe significantly enhances the accuracy. Only one probe per 

estimation interval or three percent of vehicles traversing as probe is sufficient for accurate estimates 

for different magnitude of sink, source or detector counting error. For Probe-Only significantly large 

numbers of probes are required to obtain accuracy comparable to that from CUPRITE. The current 

market penetration of probe vehicle is quite low, especially in urban network and a large number of 

probes per estimation interval are rare. With current few numbers of probes, CUPRITE can 

significantly enhance the accuracy of travel time estimation.  

In this chapter, CUPRITE is tested on a link between two consecutive intersections which forms the 

foundation of the CUPRITE application. In the next chapter, the application of CUPRITE for 

movement specific and route travel time estimation is discussed. 

Equation Chapter (Next) Section 1 
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4 Discussions on route travel time 

estimation  

In this chapter a methodology for exit movement specific travel time is recommended, followed by the 

discussion on the travel time estimation for a route using Component based and Extreme based 

estimation technique. 

4.1 Exit movement specific link travel time 

4.1.1 Significance 

The flow on an urban link can be from different entrance links at upstream and towards different exit 

links at downstream. For instance in Figure 4-1 there are three exit movements at downstream: Lft, 

Thru and Rt. The entrance flow on the link is also from three different directions at the upstream: A, B 

and C. In all, there can be nine different combinations of flows: A to Lft, A to Thru, A to Rt, B to Lft, B 

to Thru, … ,C to Rt. Based on the delay experienced by a vehicle at upstream intersection and at 

downstream intersection there can be nine different combinations of travel time from an upstream link 

to the downstream link. For route specific travel time one is interested in one of these combinations 

based on the flow associated with the route.  

 

u/s 

Lft 
A 

C 

B Thru 

Rt 

 

Figure 4-1: Different turning movements associated with a link. 

We define travel time on a link as the time required to travel from the entrance of upstream 

intersection to the entrance of downstream intersection. Therefore, here we can define total entrance 

flow at upstream (u/s) as combination of flow from A, B and C and focus on the estimation of travel 

time from u/s to Lft, u/s to Thru and u/s to Rt (i.e., travel time associated with different exit turning 

movements of the link.). 

Figure 4-2 is real individual vehicle travel time for two different movements on one of the urban 

signalized link in Lucerne city, Switzerland13. It can be seen that travel time from u/s to Lft movement 

is significantly higher than that from u/s to Thru movement. And the average travel time (u/s to d/s) is 

not a true representative of different movements. Hence it is worth analyzing travel time for different 

movements associated with link.  

                                                      
13 The data is from intersection A (Kasernenplatz) to intersection D (Pilatusplatz) (Refer to Figure 5-11) of the 

study site discussed in the next chapter on CUPRITE validation with real data. 
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Figure 4-2: Example for actual travel time for different exit movements associated with a link.  

4.1.2 Issue 

CUPRITE can be applied for the above discussed link exit movement specific travel time estimation. 

For this we need to estimate accurate upstream (arrival) and downstream (departure) cumulative plots 

for each exit movement. Assuming detectors at stop-line location: one can accurately obtain departure 

cumulative plot for each exit movements. The stop-line detector at upstream intersection provides total 

upstream cumulative plot i.e., cumulative plot based on the total flow at the upstream entrance of the 

link. What is unknown is the upstream cumulative plot for each exit movement.  

Note: For simplicity of discussion here we use the term exit moments. To be precise we consider the 

combination of different movements, based on the link geometry and signal phases. For instance: for 

downstream intersection in Figure 4-3a travel time for all the movements is to be differentiated (Here 

downstream cumulative plot for Rt, Lft and Thru movements are obtained from detector da1, da2 and 

da3, respectively.) whereas, for downstream intersection in Figure 4-3b travel time for right movement 

is to be differentiated from combination of the through and left movement (Here, downstream 

cumulative plot for Rt movement is obtained from detector db1 and for Thru+Lft movement is obtained 

from sum of counts from db2 and db3.). 
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Figure 4-3: Example for two different downstream exit movement combinations based on link 
geometry. 

4.1.3 Vertical scaling technique to define the upstream 

cumulative plot for each exit movement  

Let us consider an example. Figure 4-4 illustrates a study link with flow from three different directions 

at upstream intersection and exit flow towards three different movements at downstream intersection. 

In the example, at upstream intersection: Detector A and detector C are on shared-used lane with 

proportion of counts ηA and ηC, respectively towards the study link. One can obtain total cumulative 

plot at upstream (UT) of the study link as a linear combination of cumulative plots from each upstream 

detector, scaled with respect to the counts proportions: 

 
T A A B B C C

U CP CP CP  (4.1) 

Where: ηA, ηB and ηC are proportion of counts observed at upstream detectors A, B and C, respectively 

towards the study link. Here, ηB is unity as detector B is not on a shared-use lane.  

To estimate the arrival cumulative plot for each movement we consider vertical scaling technique on 

UT. Here we define scaling factors: SLft, SThru and SRt as the factors used to vertically scale UT to define 

upstream cumulative plot for each movements.  

 ( , ); ( , ); ( , )
Lft Lft T Thu Thru T Rt Rt T

U f S U U f S U U f S U  (4.2) 
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Say variables d, p, and m, represent day of the week, time period of the day, and mth exit turning 

movement, respectively. The variable , ,m p dS  represents the scaling factor for mth exit movement, pth 

period of dth day of the week. For instance: ,7:00 7:15 ,Lft am MondayS is the scaling factor for left exit 

movement, from 7:00 a.m. to 7:15 a.m. on Monday. The cumulative plot for mth movement (Um(t)) can 

be defined as follows: 

 , ,, , , ,
( ) ( ) [ ( ) ( )] [ , ]m p dm m s p T T s p s p e p

U t U t S U t U t Time Periods and t t t  (4.3) 

Where: te,p and ts,p is the time corresponding to the start and end of the pth time period. 



 

 

9
3
 

                                                              

 

Detector A 
Shared-use lane 
Observed cumulative Plot: CPA 

Proportion of counts towards study link = ηA 

Detector C 
Shared-use lane 
Observed cumulative Plot: CPC 

Proportion of counts towards study link = ηC 
 

STUDY LINK 

Detector B 
No Shared Use Lane 
Observed cumulative Plot: CPB 

Proportion of counts towards study link = ηB = 1 
 

u/s 

Left (Lft) Exit Movement 
Observed cumulative Plot: DLft 

Turning ratio of flow on study link = αLft 
 

Right (Rt) Exit Movement 
Observed cumulative Plot: DRt 

Turning ratio of flow on study link = αRt 
 

Through (Thru) Exit Movement 
Observed cumulative Plot: DThru 

Turning ratio of flow on study link = αThru 
 

d/s 

UT(t) = αACPA + αBCPB +αCCPC 

 

Figure 4-4: Example of a study link with flow from three different directions at upstream intersection and exit flow towards three different movements 
at downstream intersection.  
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4.1.3.1 How to define the scaling factor 

Here we consider two different approaches to define the scaling factor based on: historical average 

turning ratios; and historical effective scaling factor. Both are defined in terms of time of the day and 

day of the week. 

4.1.3.1.1 Average turning ratios  

As UT is the total counts observed at the upstream entrance of the link, therefore it is obvious that the 

initial estimate for the scaling factor should be the actual real time exit turning ratio of the link.  

In practice, travelers traversing on a link, decides its movement based on its destination and route 

choice for that destination. Turning ratios are random variables and vary with time. For instance, 

Figure 4-4 illustrates real turning ratio, measured on a particular day, on a link at Ikegami Shinmachi 

Intersection, Kawasaki city, Japan. It can be seen that there is significant variation in the turning ratio 

for different peak periods and different time of the period (For instance, Thru movement turning ratio 

for morning peak period varies from 60% to 85% with average of 78% whereas, during evening peak 

period the average for Thru movement is 83% with relatively less variation.). Turning ratio is a 

stochastic (random) parameter, and different observations for same time of the day and day of the 

weak have different values. However, one can obtained the best estimate for the expected turning ratio 

based on the past (historical) observations. 

 

0%

20%

40%

60%

80%

100%

7:00 7:30 8:00 8:30 9:00 9:30 10:00

T
u

rn
in

g
 R

a
ti

o

Time (hr:mm)

0%

20%

40%

60%

80%

100%

16:00 16:30 17:00 17:30 18:00 18:30 19:00

T
u

rn
in

g
 R

a
ti

o

Time (hr:mm)

Morning peak 

Thru 

Rt 
Lft 

Evening peak 

Thru 

Rt Lft 

 

Figure 4-5: Example for real turning ratios for three different directions from one of the link at 
Ikegami Shinmachi intersection, in Kawasaki City, Japan. 

Estimating turning ratios is mathematically a non-deterministic problem with infinite number of 

solutions. Models for both static and dynamic (real time) applications are developed to estimate the 

―most likely‖ solution. For instance, Martin [96] has applied Linear programming for real time turning 

ratio estimation. Lan and Davis [97] used non linear least square approach and quasi maximum 

likelihood approach using Markovian traffic flow model. The models in literature can be applied for 

developing the historical database for average turning ratios values for different time of the day and 

day of the week and hence the scaling factor can be define based on the most appropriate value.  

Say variable αm,p,d represents the historical average turning ratio for mth exit movement, during pth time 

period and dth day of the week. Then we can define scaling factor as: 

 , , , ,m p d m p d
S  (4.4) 
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The above consideration of the average turning ratio defines the expected cumulative plot at upstream 

of the link for each movement. This is the initial upstream cumulative plot and is to be further 

redefined to take into account the effect of mid-link sinks and sources, and detector counting error. 

4.1.3.1.2 Effective scaling factor 

The testing result in the previous chapter gives confidence in the accurate estimation of travel time for 

offline application of CUPRITE. Hence, the offline redefined cumulative plot at upstream with probe 

data can be utilized for developing a historical database of effective scaling factor for different time of 

the day and day of the week. The effective scaling factor incorporates the scaling required for exit 

turning ratio and also due to probable loss/gain of vehicles to/from mid-link sinks/sources.  

To develop the database, at the end of each day, the total cumulative plot observed at upstream (UT) 

and the offline cumulative plot for mth movement (Um) should be integrated to define the effective 

scaling factor for time periods with at least one probe vehicle  

Say variable sm.p,d (4.5) represents the scale for a record of mth exit movement, pth time period of dth day 

of the week:  

 

, , , ,

, ,

, ,

, , , ,

, , , ,

:

( ) ( )

( ) ( )

T d p m d p

m p d

T d p

T d p T e p T s p

m d p m e p m s p

Y Y
s

Y

W here

Y U t U t

Y U t U t

 (4.5) 

Where:  

UT(t) and Um(t) is the total upstream cumulative counts observed and cumulative count for mth 

movement, respectively at time t;  

te,p and ts,p is the time corresponding to the start and end of the pth time period;  

YT,d,p and Ym,d,p is the total counts observed, and counts for the mth movement observed during 

the pth time period, respectively (see Figure 4-6e).  

The database consists of the values of the effective scaling factor sm,p,d properly classified in 

corresponding time of the day and day of the week. The database is daily self updated, with the new 

values defined at the end of the day. The required scaling factor , ,m p dS  can be defined as the median 

of values of effective scaling factor defined in the historical database:  

 , , , ,m p d m p d
S Median of s  (4.6) 

4.1.3.2 Example of the methodology 

Say we have a historical database of the scaling factor, either defined in terms of turning ratios or 

effective scaling factor. For each of the periods shown in the Figure 4-6, first the scaling factor from 

historical database is obtained and initial estimate of the upstream cumulative plot for movement m 

i.e., Um(t) is defined using equation (4.3). Thereafter, Um(t) is redefined as discussed in Section 3.3 by 

integrating with probe vehicle data. Finally, the redefined Um(t) is utilized to self update the historical 

database using equation (4.5). 
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Figure 4-6: Example of the methodology for estimation of upstream cumulative plot for each exit 
turning movement.  

4.1.4 Architecture for exit-movement specific link travel time 

The architecture for the CUPRITE to take into account the exit-movement specific travel time 

estimation is provided in Figure 4-7:  

i. Initial upstream cumulative plot for a movement is defined by vertically scaling the 

total upstream cumulative plots with scaling factor defined with historical database;  

ii. Downstream cumulative plot for the movement is defined by integrating the 

downstream detector with signal timings;  

iii. Probe vehicle data is fixed to downstream cumulative plots;  

iv. Thereafter, upstream cumulative plot is redefine; and  

v. Finally, travel time for the movement is estimated as ratio of area between the 

cumulative plots and the number of vehicles departing from the exit movement.  
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Figure 4-7: CUPRITE architecture for link-movement specific travel time estimation.  
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In next chapter (section 5.2.1) to validate the CUPRITE on real data we apply scaling factor defined in 

terms of average turning ratio. The thorough testing of the above recommendation for developing a 

database for effective scaling factor is beyond the scope of this report. 

4.2 Route travel time 

A route can be divided into different components. The route (from S to E) shown in Figure 4-8 can be 

divided into five components: a) left movement from S to A; b) through movement from A to B; c) left 

movement from B to C; d) right movement from C to D; and e) right movement from D to E. The 

travel time for the route is the sum of the travel time on each component. 

Finishing point of 

the route (E)

Starting point of 

the route (S)

Route

Left movement travel time 

for link BC

A
B

C

D E

Link SA

Link AB
Link BC

Link CD

Link DE

 
 

Figure 4-8: Example for route travel time. 

Say, a vehicle starts its journey at time tstart to cover the above route and travel time on ith component at 

time t be TTi(t). Then in order to obtain route travel time following two methods can be applied: 

i. Instantaneous method: This is the sum (4.7) of travel time of each component of the 

route at time tstart i.e. 

 Instantaneous ( )
Route i start

Route Components

TT TT t  (4.7) 

ii. Time-slice method: This is the sum (4.8) of travel time of each component of the route 

at time when vehicle is expected to be at that component. That is, travel time of first 

component is TT1(tstart); travel time of second component is TT2(tstart + TT1(tstart)); travel 

time for third component is TT3(tstart + TT1(tstart)+ TT2(tstart + TT1(tstart)) and so on.  

 

1

1

T ime-Slice ( )

i

Route i start j

Route Components j

TT TT t TT  (4.8) 

4.2.1 CUPRITE for route travel time estimation 

CUPRITE can be applied for route travel time estimation in following two approaches:  
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i. Extreme Based (RE): Here we estimate route travel time by directly considering the 

area between the cumulative plots at extreme points of the route i.e., upstream entrance 

and downstream exit of the route; and  

ii. Component Based (RC): Here we add movement specific travel time of each component 

of the route. 

4.2.1.1 Extreme based route travel time (RE) 

Here the route travel time is estimates using the cumulative plots at upstream entrance and downstream 

exit of the route. At downstream exit all the vehicles departing during the travel time estimation 

interval are considered. A proportion of these departing vehicles are those that traverse the complete 

route and are randomly distributed throughout the estimation period. Due to this random distribution 

the area between the plots is a representative of travel time for the vehicles that traverses the complete 

route.    

This approach is quite simple to apply. The detectors are required only at upstream and downstream of 

a route, all other components of the route do not need to have detectors. However, the required probes 

should be those which traverse the complete route. Note: Here virtual probe cannot be considered as 

mid-link intersections are source of significant mid-link delay even during undersaturated situation 

(Refer to Section 3.3.2 in Chapter 3 ). 

4.2.1.2 Component based route travel time (RC) 

Here, we consider the pairs of cumulative plot at upstream and downstream for each component. Each 

pair of cumulative plot is independent from the other pair in the network as relative deviation amongst 

each pair is corrected independently. Say Ul,m(t) and Dl,m(t) represents a pair (the upstream and 

downstream cumulative plot) for mth movement of link (component) l.  

Consider the Figure 4-8, say one is interested to know the travel time from point S to start of the link 

CD i.e., average travel time for the vehicles departing from left movement of link BC during time 

interval from t1 to t2. For each of the components: link SA, link AB and link BC we have separate 

cumulative plots. Figure 4-9 and Figure 4-10 represents the methodology for instantaneous and time-

slice travel time, respectively. 

For instantaneous travel time (Figure 4-9), we consider the average travel time of all vehicles 

departing during time interval t1 to t2 for a) left movement of link SA; b) through movement of link AB; 

and c) left movement of link BC. 

For time-slice travel time (Figure 4-10) we consider average travel time of the vehicles departing 

during time interval a) t1 to t2 from left movement of link BC; b) t3 to t4 from through movement of link 

AB; and d) t5 to t6 from left movement of link SA. Where t3, t4, t5 and t6 are time obtained based on the 

vehicles represented in the upstream cumulative plot of the downstream link i.e.,  

 

1 1

3 , , 1 4 , , 2

1 1

5 , , 3 6 , , 4

( ( )); ( ( ))

( ( )); ( ( ))

BC Lft BC Lft BC Lft BC Lft

AB Thru AB Thu AB Thru SA Lft

t U D t t U D t

t U D t t U D t
 (4.9) 

Note: Here, we are interested in estimating the travel time, i.e., the experienced travel time for the trip. 

Therefore, the above analysis starts from the downstream component (link BC) and move toward the 

upstream component (link SA). ―Instantaneous travel time‖ is a good estimator for real time 

application as it is more close to the expected travel time in the next interval. ―Time-slice travel time‖ 

is a good estimator for offline applications as it provides accurate estimates for experienced travel 

time. In the present analysis we are interested in experienced travel time hence we apply time-slice 

analysis using component based approach. For real time application instantaneous travel time can be 

applied using component based approach for better estimates for expected travel time. 
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Figure 4-9: Example for instantaneous route travel time.  
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Figure 4-10: Example for time-slice route travel time: Component based (RC). 
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4.2.2 CUPRITE testing for route travel time 

In the previous chapter CUPRITE was tested on single link between two consecutive intersections. In 

this chapter CUPRITE is tested to estimate travel time for multiple links route. A network of five 

consecutive signalized intersections, with stop-line detectors is considered for the testing (see Figure 

4-11) and we define a route from intersection A to intersection E.  

First the RE and RC estimation techniques are compared for flow F1 (where 90% of the flow at 

upstream traverses the route). Thereafter, the result of RE application is provided for following flow 

values:  

i. F2: 50% of the flow at upstream traverses the route. 

ii. F3: 20% of the flow at upstream traverses the route. 

The Origin-Destination matrix for the network is randomly defined so that the above mentioned flow 

conditions are satisfied. Due to random selection, for case study F1 and F3, the counts at upstream 

(intersection A) are 5% more than that at downstream (intersection E) i.e., there is effective 5% sink. 

Similarly, for case study F2, there is effective 10% source. 

 

A B C D E 

U(t) D(t) 

F1 : 90% of the vehicles in U(t) are also in D(t) 
F2 : 50% of the vehicles in U(t) are also in D(t) 
F3 : 20% of the vehicles in U(t) are also in D(t) 
 
 

 All intersections are signalized 

 All links are two lanes, with separate left 
and right movement lane.  

 Length of each link is approx 500 m 
 

Figure 4-11: Network for CUPRITE testing for route travel time estimation.  

Figure 4-12 illustrates the framework for the testing. Two different case studies are performed:  

i. Case M1: Here the comparison between RC and RE technique is performed for flow 

combinations F1 and for: undersaturated (Case M1.U); and oversaturated traffic 

condition (Case M1.O).  

ii. Case M2: Here different flow combinations (F1, F2 and F3) are analyzed for RE 

technique. 



4 Discussions on route travel time estimation 

 
103 

Testing of CUPRITE for route travel time estimation (MultiLink)

Undersaturated Oversaturated

Extreme based 

(RE)

Undersaturated Oversaturated

F1 F2 F3F1 F1 F1

Case 

(V+R)
Case 

R

Case 

R

Case 

R

Case 

R

Case 

R

Case M1.O:

Comparison of RC and RE for 

Oversaturated traffic 

condition 

Case M1.U: 

Comparison of RC and RE for 

Undersaturated traffic 

condition 

Case M2: 

Analysis of different traffic 

conditions

Component based 

(RC)

Case V+R:   Virtual and Real Probe.

Case R:         Real probe.

F1:              90% flow at upstream traverses the route.
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F3:              20% flow at upstream traverses the route.
  

Figure 4-12: Framework for testing of CUPRITE for route travel time estimation. 

For RC the components defined are through movements from A to B; B to C; C to D; and D to E. For 

RE cumulative plots at upstream entrance (U(t)) at intersection A and downstream exit (D(t)) at 

intersection E are considered. 

4.2.2.1 Case M1 

The results for undersaturated (case M1.U) and oversaturated (case M1.O) traffic conditions are 

presented in Figure 4-13 and Figure 4-14, respectively. 

During undersaturated traffic condition, virtual probe can be defined for each component and hence 

even in the absence of real probe accurate travel time can be obtained for RC (AM > 96% and A5 > 

94%, for Sn =0) (see Figure 4-13). The presence of probes slightly decreases the accuracy this is 

consistent with the results for single link (Refer to Section 3.5.4 and example in Figure 3-18. Due to 
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randomness in the vehicle arrival and other reasons, the consideration of real probes provides 

distortion in the U(t) resulting in low accuracy compared to that of virtual probe case.).  

During oversaturated traffic condition, virtual probes are not considered and the accuracy for RC 

increases with increase in Sn (see Figure 4-14). 

Both A5 and AM for RC is slightly higher than that from RE. This indicates that RC provides better 

estimates in terms of average performance and consistency in performance.  

Though RC is more accurate but detectors data and signal timings are required for each component. 

There are higher chances of getting probe for each component than one traversing the complete path. 

RE is simple to apply and data only at upstream and downstream of the route is required but the 

required probe should traverse the complete route, which could be less frequent.  
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Figure 4-13: Case Study M1.U, Flow = F1, Accuracy (a) AM and (b) A5 versus Sn.  
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Figure 4-14: Case Study M1.O, Flow = F1, Accuracy (a) AM and (b) A5 versus Sn. 



4 Discussions on route travel time estimation 

 
107 

4.2.2.2 Case M2 

In the previous section it is demonstrated that RC has better performance than RE. Therefore, in this 

section we perform further testing using RE. This provides lower bound for the performance as the 

approach RC can slightly improve the accuracy. The results for the three different flows F1, F2 and F3 

are presented in Figure 4-15, Figure 4-16 and Figure 4-17, respectively. The results are consistent with 

the previous case studies on a single link (Subsection 3.5.4) i.e.,  

i. With at least one probe per estimation interval the performance of CUPRITE in terms 

of AM and A5 is generally more than 95% and 85%, respectively. Whereas, 

significantly large number of probe vehicles are required to obtain comparable 

accuracy from Probe-only method.  

ii. Online application performs better than offline application.  

iii. With less number of probes there is significant benefit of integrating detector data, 

signal timings and probe vehicle.  

For the above analysis the ―true‖ average travel time for the route is obtained by all the vehicles that 

traverse the complete route. For F3 (see Figure 4-17) only 20% of the vehicles traverse the complete 

route. Therefore, for large Sn (>15) the accuracy from Probe-only method is significantly higher.  

The above analysis indicates that CUPRITE can be applied for route travel time estimation for 

different flow combination with implicit consideration of mid-route delay due to presence of mid-route 

intersections or other sources for delay. 
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Figure 4-15: Case F1 90% of demand goes through the route (Effective 5% sink). Results for 
accuracy: (a) AM and (c) A5 versus Sn. 
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Figure 4-16: Case F2 50% of demand goes through the route (Effective 10% source). Results for 
accuracy: (a) AM and (c) A5 versus Sn. 
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Figure 4-17: Case F3 20% of demand goes through the route (Effective 5% sink). Results for 
accuracy: (a) AM and (c) A5 versus Sn. 
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4.3 Concluding remarks 

As discussed in the literature review chapter (Chapter 2) one of the major limitations of the existing 

travel time estimation models is that the travel time provided is average for the whole link. Generally 

to estimate movement specific link travel time, penalties (s) are added to the average link travel time. 

For ITS applications more robust and accurate movement specific travel time is required. This chapter 

discusses about the application of the CUPRITE for estimation of movement specific travel time for a 

link followed by the discussion on the route travel time estimation. Two different approaches: a) 

Component based; and b) Extreme based, are discussed. Both the approaches provide similar results. 

Component based is more reliable with greater chances of probe vehicle in each interval, though 

additional data from each component is required. Extreme based is simple, and only requires data from 

upstream and downstream of the route but chances of obtaining a probe that traverses the entire route 

might be low. The Component based and Extreme based approaches discussed here are also validated 

with real data in the next chapter. 

Equation Chapter (Next) Section 1 
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5 Validation on real data 

Having obtained encouraging results from CUPRITE testing on controlled environment, we move on 

to validate the methodology on real data. This chapter describes the framework for the CUPRITE 

validation followed by site description and results.  

5.1 Framework  

5.1.1 Validation methodology 

CUPRITE is validated on real data collected at Lucerne city, Switzerland (Figure 5-1). The signal 

control at the site is equipped with VS-PLUS signal controller [98]. The signals are controlled 

centrally and the data from the controller is logged and stored by the Lucerne City Transport Authority 

[99]. The detector counts and signal timings for CUPRITE are obtained from VS-PLUS data.  

Spreuer Bridge

Chappel Bridge Lucerne Lake

Railway station

 

Lucerne, Switzerland 

 

Figure 5-1: Lucerne, Switzerland. 

Ground truth, individual vehicle travel time, is obtained from manual number plate (license plate) 

survey. It was performed on 15th April, 2008 (Tuesday, working day) from 3:00 p.m. to 6:00 p.m. The 

survey period captures both undersaturated and oversaturated traffic conditions. The required probe 

vehicles for CUPRITE were randomly selected from the survey data. Section 5.1.2 introduces the 

procedure employed for the survey. 
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Figure 5-2 systematically illustrates the steps involved in the validation procedure. Prior to the 

application of the CUPRITE, both number plate survey data and VS-PLUS data need to be cleansed 

(Section 5.1.3). The cleaned data is the input to CUPRITE and it provides estimated average travel 

time (Section 5.1.4) which is finally, statistically validated with ground truth average travel time 

obtained through survey (Section 5.1.6).  
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Figure 5-2: Framework for CUPRITE validation. 
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5.1.2 Number plate survey 

A team of 28 observers were deployed to collect the time and vehicle ID (number plate) of vehicles 

observed at each survey station. Travel time from one station to another can be obtained by comparing 

the data from two survey stations. For this the vehicle ID at two stations is to be correctly noted. 

Number plate survey was continuous and to reduce human errors observers were grouped into 

different groups and instructed to work in shift, with regular rest periods.  

 

Observer with a 
PDA 

Observer with a 
voice recorder 

Video camera 

 

Figure 5-3: A survey station. 

Figure 5-3 illustrates a survey station where an observer is performing a continuous voice recording. 

He is accompanied with second observer who logs few recorded values into a PDA which are later 

used to cross-check the number plate survey data at a station. The station is also equipped with a video 

camera, which records all the vehicles. The counts from the camera and recorded values can be used to 

know the capture percentage of survey. The video recording can also provide the actual turning ratio at 

the intersection. However, for the present study the data from video recorder is not required.  

5.1.2.1 Raw data 

We used handy digital voice recorders, each with capacity of more than three hours for continuous 

recording (see Figure 5-4). A continuous voice recording was performed, where observer read out the 

first four digits of the number plate of a vehicle when it passes a predefined point (entrance of 

intersection). For instance, 86 86 was read out if the observed number plate is ―LU 86869‖. At regular 

intervals time stamps were also recorded. The survey stations were entrance of intersections. 

Therefore, during signal red phase there was no vehicle entering the intersection. The observer read 

out the current time, as a time stamp, during each signal red phase. The number data includes car, bus 

and trucks. Motorcycles and bicycles are not reported.  



5 Validation on real data 

 
117 

 

Digital voice recorder  

Observer read out first 
four digits 

Time 

Time stamp 

Continuous voice recording 

 

Figure 5-4: Illustration of continuous voice recording of number plate survey. 

5.1.2.2 Data entry 

After the online collection of data, the data was processed offline to manually enter the recorded 

values into an electronic spreadsheet (see Figure 5-5). For this the voice recording was played into a 

standard voice recorder (Windows Media Player) and the listened values were manually entered into a 

spreadsheet with two columns: Column 1 for the value recorded; and column 2 for the time on the 

media player corresponding to the frame when the recorded value is listened. The latter column 

provides the relative difference in time between two recorded values. With time stamps recorded 

during the survey one can easily process the time corresponding to each number plate value. Following 

instructions were provided for entering data: 

Step 1 Check the setting of the player. The play speed should be normal. For windows 

media player check: Play>PlaySpeed>Normal (or Ctrl+Shift+N). 

Step 2 Listen to the recorded value. Listen only one value at a time e.g. if the recording is 

3234 3452 6783 987… then pause after hearing 3234. 

Step 3  Enter in excel the value listened and the time displayed in the player. 

Step 4 Repeat steps 2 and 3. 
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Figure 5-5: Illustration of the procedure for data entry into spreadsheet. 

5.1.3 Data cleansing 

5.1.3.1 Number plate survey data 

Travel time of a vehicle between two survey stations is the time difference when it is observed at two 

stations. The number plate at upstream and downstream stations is matched and individual vehicle 

travel time is obtained. Due to human error or two vehicles having similar first four digits of the 

number plate or other reasons, there may be observed travel time much different from the neighboring 

traversing vehicles. These deviant travel time values are considered as outliers and are not be 

considered for the validation procedure. Here, the box-and-whisker plot technique is employed to filter 

the outlier travel time values.  

5.1.3.1.1 Filtering the outlier using box-and-whisker plot technique 

In the box-and-whisker plot technique a set of data is represented in: a) median (M), separating the 

data in two parts; b) lower quartile (LQ) i.e., the median of the lower part of data or 25th percentile; 

and c) upper quartile (UQ) i.e., median of the upper part of data or 75th percentile. The difference 

between the upper quartile and lower quartile is Inter Quartile Range (IQR) and it defines the scatter of 

the data. The Lower Bound Value (LBV) and Upper Bound Value (UBV) are: 

 1.5 *LBV LQ IQR  (5.1) 

 1.5 *UBV UQ IQR  (5.2) 

 IQR UQ LQ  (5.3) 

Any point lying below LBV or above UBV is regarded as an outlier and is disregarded.  
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Figure 5-9 represents an example. Figure 5-9a represents the raw date. To filter the outlier, a 10 min 

time window (5 min before and 5 min after) around the data point under consideration is defined. 

Box-and-whisker plot is obtained for all the data points within the time window. If the data point 

under consideration (see Figure 5-9b) is below LBV or above UBV then it is defined as outlier. The 

process is repeated for all the data points. Note: all the points (including those earlier defined as 

outliers) within the time window are considered for defining box-and-whisker plot. Figure 5-9c 

represents the final cleansed data with outliers removed.  
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Figure 5-6: Example of filtering the outlier using box-and-whisker plot. 

5.1.3.2 VS-PLUS data 

VS-PLUS provides pulse data for each detector and signal phase, i.e., value ‗1‘ or ‗0‘ and 

corresponding time stamp. If we plot the values versus time, then a pulse can be defined as the portion 

of the graph represented by value of one (see Figure 5-7). Due to different reasons, sometimes there is 

noise in the pulses (unexpected fluctuations) which need to be filtered out. The noise can be due to due 

to pulse breakup (Refer to Section A.1.1 in Appendix A ).   

5.1.3.2.1 Filter for VS-PLUS detector data 

The values of ‗1‘ and ‗0‘ indicate the presence and non-presence of a vehicle on the detector, 

respectively. Therefore: a) the time length for a pulse represents the occupancy time (OT) of the 

vehicle on the detector; b) the time difference between the end of the leading pulse and start of the 

following pulse is represents of the gap (G) between the vehicles; and c) the time difference between 

the start of two consecutive pulses is the representative of the headway between vehicles (see Figure 
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5-7). Ideally, a pulse should correspond to a vehicle and hence the vehicle by vehicle count can be 

obtained. However, due to noise in the pulse there can be overcounting of vehicles. To avoid this we 

define minimum accepted occupancy time (OTmin) and minimum accepted gap (Gmin). The filter is 

applied such that: a) if the gap between two consecutive pulses is less than Gmin then both the pulses 

are merged, representing only one count for two pulses; and b) if the occupancy time is less than OTmin 

then pulse is disregarded. The value of OTmin and Gmin used in the present analysis is 0.3 s, each.  
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Figure 5-7: Pulse data representation for VS-PLUS detector data. 

The above filter of minimum occupancy and minimum gap can only remove noise in the pulse. This 

does not resolve the problem of detector counting error due to closely spaced vehicles, cross-talk etc. 

For instance, if the gap between vehicles is small and detector is not able to differentiate two 

consecutive vehicles then a long pulse, instead of two pulses is obtained. This results in undercounting. 

CUPRITE addresses this issue of detector counting error (Refer to Chapter 3).  

5.1.3.2.2 Filter for VS-PLUS signal data 

The values of ‗0‘ and ‗1‘ indicate the start of display red light and display green light for the signal 

phase, respectively (see Figure 5-8) and hence the corresponding displayed signal red time and 

displayed signal green time. Ideally, a displayed green or red should be more than some minimum 

value but due to noise in the data there are periods where we have pulses close to each other. 

Analogous to the previous filter for VS-PLUS detector data, we consider the minimum red and green 

time to be 3 s and pulse or gaps less than 3 s are ignored.  
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Figure 5-8: Pulse data representation for VS-PLUS signal data. 

5.1.4 CUPRITE application  

As the survey vehicle data is available for a fixed time period and the probe data required for 

CUPRITE application is randomly selected from the survey vehicle data. Therefore, for each 

estimation interval CUPRITE is applied for nC times (5.5) with different values of the seed for random 

number generator to randomly selecting probe vehicles. Hence, the application of CUPRITE provides 

different travel time estimates for a given estimation interval. Say for an estimation interval the mean 

and standard deviation of the estimates be CX  and SC, respectively. Then we apply the sampling 

theory and confidence bounds for the travel time estimate by CUPRITE are defined by:  

 
/ 2 , 1 / 2 , 1C C

C C

C n C C n

C C

S S
X t X t

n n
 (5.4) 

Where: 

µC is the mean of the population of estimates from CUPRITE application; 

/ 2 , 1Cn
t is the t-statistic at α level of significance and nC-1 degrees of freedom; 

nC is defined as follows:  

 
!

( , 20) ; assum ing
!( ) !

s

C s

s

n
n M in n N

N n N
 (5.5) 

ns is number of survey vehicles in the estimation interval.  

This means that, for an estimation interval, if N number of probe vehicles is required, then CUPRITE 

is applied by randomly selecting different combinations (without repetition of same combination) of N 

probe vehicles, or for 20 times, whichever is the minimum. For instance, say 2 (=N) probe vehicles in 

an estimation interval are required. If number of survey vehicles are 10, then there can be 45 different 

combinations of two probe vehicles. In this case, CUPRITE is applied 20 times by randomly selecting 

(without repetition) a combination each time. However, if there are 5 survey vehicles then only 10 

combinations of two probe vehicles is possible. In this case, CUPRITE is applied 10 times and all the 

combinations are considered.  
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5.1.5 Ground truth travel time 

The number plate survey captures the sample of vehicles traversing the link (see Figure 5-9). We are 

interested in actual average travel time for all the vehicles departing the link during travel time 

estimation interval. Say the mean and standard deviation of the travel time obtained from the survey be 

sX  and Ss, respectively. We apply the sampling theory to estimate the confidence bounds in the 

actual average travel time (µs) of the vehicles as:  

 
/ 2 , 1 / 2 , 1s s

s s

s n s s n

s s

S S
X t X t

n n
 (5.6) 

Where: 
/ 2 , 1sn

t is the t-statistic with α level of significance and ns-1 degrees of freedom; ns is number 

of survey vehicles in an estimation interval.  
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Figure 5-9: Systematic representation of the sample of vehicles captured from the population; and 
confidence in the estimate of population from that of the sample.  

5.1.6 Validation indicator 

We present the results: graphically by overlapping the time series of travel time from survey and 

CUPRITE application; and qualitatively as statistical test of hypothesis and significance.  

5.1.6.1 Graphical presentation of results 

Figure 5-10 illustrates an example for the presentation of results. For each estimation interval, the 

black box represents the confidence bounds for the ground truth average travel time (see Figure 5-10a) 

and the orange box represents the confidence bounds for the travel time estimates from the CUPRITE 

(see Figure 5-10b).  

Accuracy of the estimates from CUPRITE is defined as following:  

 ( )
i i

i

s C

i

s

X X
Error

X
 (5.7) 
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n
 (5.8) 

 (%) 1Accuracy MAPE  (5.9) 

Where: Errori is the absolute percentage error for ith estimation interval; 
isX and 

iCX are the mean of 

survey travel time and mean of travel time estimates from CUPRITE application during ith estimation 

interval, respectively; n is the number of estimation intervals; and MAPE is the Mean Absolute 

Percentage Error obtained from the CUPRITE application for different estimation intervals during 

survey period.  
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Figure 5-10: Systematic representation of the results for CUPRITE validation. 

5.1.6.2 Statistical test 

We perform statistical test so as to make qualitative decisions about the CUPRITE validation. The 

intension is to determine whether there is enough evidence to ―reject‖ a (null) hypothesis about the 

CUPRITE validation. Here, two different processes: a) number plate survey and b) CUPRITE 

application; provide dataset for average travel time. We are interested to know if these two processes 

provide statistically similar results, i.e., the mean of the two processes are the same.  

We make a null hypothesis H0 (5.10): that the true mean14 of the first process (µs) is equal to the true 

mean of the second process (µC). Or in other words the two sets of data (number plate and CUPRITE) 

with sample means sX and CX , respectively are both part of the same population so that their 

population means are equal. Null hypothesis is tested against the alternate hypothesis (Ha) that the two 

means are not equal (5.11).  

 
0 s 

  :  
C

Null Hypothesis H µ µ  (5.10) 

 
s 

  :  
a C

Alternative Hypothesis H µ µ  (5.11) 

                                                      
14 Mean of the population from which the process is a sample. µs is the mean of the population of vehicles 

traversing the link. µC is the mean of all possible estimates from CUPRITE application using different probe 

vehicles drawn from the population of vehicles traversing the link.  
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If we ―do not reject‖ the null hypothesis (H0), then we are saying that despite the fact that the travel 

time estimates come from two different processes there is not enough evidence to say that they are not 

part of the same overall population.  

The statistical test to make the above decision is t-test to compare two sample means (two-tailed t-

test). We form the test statistics assuming that the true standard deviations for the two processes are 

not equivalent (Interested readers can refer to any standard statistic book or chapter 7 of online 

engineering statistic handbook [100].).  

The degree of freedom (df) is estimated using the Welch-Satterthwaite approximation (5.12). 
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Where: Xi, si and ni is the mean, standard deviation and number of observations, respectively for the 

two processes. X1 = sX ; X2 = CX  ; s1 = Ss and s2 = SC; n1 = ns (number of survey vehicles during the 

estimation interval); n2 = nC (5.5).  

For α level of significance we reject the null hypothesis Ho, if:  

 
/ 2 ,test statistics df

t t  (5.14) 

Else we do not reject the null hypothesis and reject the alternate hypothesis.  

Where: tα/2,df is the upper critical value of the Student‘s-t distribution at α level of significance with df 

degree of freedom.  

 “Do not reject H0” indicates there is not enough evidence to reject the assumption that: CUPRITE 

estimates are statistically equivalent to the real travel time from the number plate survey.  

Note: Statistically, both the indicators defined in the previous subsections are connected. If the 

confidence bounds of the CUPRITE application (defined in Section 5.1.6.1) contain the mean of the 

survey travel time then we do not reject the null hypothesis (defined in Section 5.1.6.2).  

5.2 Site description 

The data is collected on eleven consecutive signalized intersections (intersections A to K) as shown in 

the Figure 5-11. It consists of three legs: 

i. Intersection A to intersection D in which the flow is from a freeway (E35) with minor 

mid-link sinks and sources;  

ii. Intersection D to intersection I, which passes through the city centre and the bottleneck 

mainly at intersection F and intersection I. This leg also carries traffic to the railway 

station; and  

iii. Intersection I to intersection K, where there is no mid-link sink or source, but 

significant amount of mid-link delay due to pedestrians. Link from intersection I to 

intersection K is along the lake side with significant number of tourists.  
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Figure 5-11: Number plate survey stations. 

5.2.1 Leg 1: Route A→D 

Intersection A to intersection D is quite interesting (see Figure 5-12). From A to B, there is minor side 

street acting as both source and sink; from B to C there is on-street bus stop; and from C to D, there are 

two different movements (left and through) associated with the link, in addition to significant loss in 

the side street. Following are the detailed characteristics. 
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Figure 5-12: Illustration of the link characteristics between intersections A and D. 

5.2.1.1 Link AB 

For link A to B, there are four stop-line detectors (as1,as2, as3, as4) at the upstream end and two mid-link 

detectors (bm1,bm2) at 60 m upstream of intersection B. Comparing the counts from the detectors, we 

found that there is approximately 2% difference between the counts from the pair of detectors (see 

Table 5-1). There can be different reasons for this difference in the counts: a) either detectors at A are 

undercounting; and/or b) detectors at B are overcounting; and/or c) there are vehicles from/to the 

minor street between intersection A and intersection B.  

Left link at the entrance of intersection A, has a pair of detectors (am3,am4) 60 m upstream of the 

stop-line. Comparing the counts between detectors (as3, as4) and (am3, am4) it is found that there is 

approximately 1.6% difference during the survey period and 3.8% difference during the survey day. 

Either detectors (as3, as4) are overcounting or detectors (am3, am4) are undercounting (see Table 5-2) or 

both.  
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Table 5-1: Detector counts between intersections A and B 

Time period u/s detectors 

 (as1,as2, as3, as4) 

d/s detectors 

 (bm1,bm2) 

Absolute percentage 

difference 

3:00 p.m. – 6:00 p.m. 6‘123 6‘250 2.1 % 

Daily 21‘744 22‘164 1.9% 

Table 5-2: Detector counts for left entrance link of intersection A 

Time period u/s detectors 

 (am3,am4) 

d/s detectors 

 (as1,as2) 

Absolute percentage 

difference 

3:00 p.m. – 6:00 p.m. 3‘213 3‘264 1.6 % 

Daily 11‘034 11‘465 3.8% 

5.2.1.2 Link BC  

For link from intersection B to intersection C, there is on-street bus stop on the left lane of the road. If 

the bus stops at the stop then it blocks the lane. Due to which there is additional mid-link delay for the 

flow of vehicles on the link BC. Here we have mid-link detectors (cm1,cm2) at 55 m upstream of the 

stop-line at intersection C.  

5.2.1.3 Link CD  

Comparing (Table 5-3) the counts for link between intersections C and D, we have three detectors (ds1, 

ds2 and ds3) at stop-line and corresponding three detectors (dm1, dm2 and dm3) at 60 m upstream of the 

stop line. It is found (see Table 5-3) that detectors (ds1, ds2 and ds3) have approximately 4% higher 

counts than (dm1, dm2 and dm3).  

Table 5-3: Detector counts from detectors between intersections C and D 

Time period u/s detectors 

 (dm1,dm2, dm3) 

d/s detectors 

 (ds1,ds2, ds3) 

Absolute percentage 

difference 

3:00 p.m. – 6:00 p.m. 5‘050 5‘232 3.5% 

Daily 17‘447 18‘180 4.0% 

The above comparison clearly indicates that detectors are not perfect and have counting error.  

For link from C to D, the flow from intersection C is distributed into flow towards a) through 

movement (DThru) b) turning left (DLft) towards city centre and c) loss (Loss) towards parking and side-

street. The distribution of the flow on link from C to D towards the three movements is illustrated in 

the Figure 5-13. This distribution is obtained based on the ratio of the counts from (ds1,ds2, ds3) and 

(cm1,cm2). It can be considered that during the survey period, on average 55% of the flow from C is 

towards direction DThru; 29% is for direction DLft and 16% is Loss.  
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Figure 5-13: Turning proportions for different directions from C to D. 

5.2.2 Leg 2: Route D→I 

Route from intersection D to intersection I is approximately 570 m. The links are of two lanes of 

which the right lane from D to G is a bus lane. There is a detector dd at the upstream of the route and 

two detectors is1 and is2 at stop-line of I (see Figure 5-14). During the survey period, effectively, 20% 

gain of vehicles is observed from D to H (refer to Table 5-4) and 64% gain of vehicles from D to I. 

30% of the vehicles from H to I are lost towards direction Y (railway station).  
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Figure 5-14: Illustration of the link characteristics between D to I. 

Table 5-4: Detector counts for intersections D to I (Leg 2) 

Time period Counts 

dd 

Counts 

hs4+ hs3 

Effective gain from 

intersection D to H 

Counts 

is2 + is1 

Effective gain from 

intersection D to I 

3:00 p.m. – 6:00 p.m. 7,200 8,580 19% 11,808 64% 

Daily 34,996 42,124 20% 53,012 51.5% 

5.2.3 Leg 3: Route I→K 

Link from intersection I to intersection K, is systematically illustrated in Figure 5-15. Though there is 

absence of mid-link source or sink, but there is significant mid-link delay due to pedestrian crossing 
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and on-street bus stop. Comparing the counts from detectors at nearby location, around 10% difference 

in the detector counts is observed. In the figure, we can see that counts from detector ks1 and ks2 differ 

by 10% from those of km1 and km2. The link consists of two lanes with almost 50% vehicle split on 

both the lanes.  
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Figure 5-15: Illustration of the link characteristics between intersections I and K and 
corresponding detector count. 

5.3 Validation results  

Refer to section 5.1.6 (page 122) for the details of the how results are presented. Travel time 

estimation interval is for five signal cycles. As signals are adaptive therefore the cycle time is not 

fixed. Fixed number of probes per estimation interval is considered. Two tailed t-tests were considered 

significant at (α=) 0.05.  

This means that we are 95 % confident that the: a) true travel time is within black box (Figure 5-10a); 

and b) travel time estimate from CUPRITE is within the orange box (Figure 5-10b). 

CUPRITE is validated for both Extreme based and Component based travel time estimation approach. 

Table 5-5 presents different cases considered for validation.  
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Table 5-5: Different cases for CUPRITE validation 

Case Extreme based (RE) Component based (RC) Comments 

Case Leg 1: 

(A→D) 

A→DLft   Importance of movement specific 

travel time estimation. 

A→DThru  

Case Leg 2: 

(D→I) 

DLft→I  City centre with flow for railway 

station. 

Case Leg 3: 

(I→K) 

I→K  Leg with mid link delay due to 

significant pedestrian volume. 

Case RE Vs RC A→F A→DLft→F Comparison between Extreme 

based and Component based travel 

time estimation.  DLft→I DLft→F→I 

DLft→K DLft→F→I→K 

Case Sp A→DLft   Discussion on consideration of 

percentage of vehicles as probes. 

The route from A→I and A→K is not considered. This is because there is a bypass from intersection D 

to intersection I (see Figure 5-11), which is used by drivers to avoid the congestion through the city 

centre. The vehicle observed at both A and I or A and K can be the one traversing through the bypass. 

In the following subsections, the results of time series of travel time and statistical decision from 

t-tests are presented in the same figure. For each estimation interval: 

i. Orange and black boxes are as defined in Section 5.1.6.1; 

ii. Green circle represents, ―not enough evidence to reject H0‖; and 

iii. Red triangle represents ―Reject Ho‖.  

5.3.1 Case Leg 1: (A→D) 

CUPRITE is applied for estimating travel time from intersection A to intersection D. The four stop-line 

detectors at A (as1,as2, as3, as4) provide total cumulative plot at the upstream (UT). The downstream 

cumulative plots for through movement (DThru) and left movement (DLft) are obtained from stop-line 

detectors (ds1,ds2) and detector (ds3), respectively. UT is scaled vertically using the average turning ratio 

of 55% for through movement and 30% for left movement to define the initial arrival cumulative plot 

for each movement (Refer to Section 5.2.1.3). CUPRITE is applied with fixed number of probes per 

estimation interval. For one, two and three probes per estimation interval the results obtained: a) For 

A→DLft are illustrated in Figure 5-16, Figure 5-17 and Figure 5-18; and b) for A→DThru are illustrated 

in Figure 5-19, Figure 5-20 and Figure 5-21, respectively.  

In most of the estimation intervals, the null hypothesis cannot be rejected. Indicating that our initial 

assumption (Mean estimated from CUPRITE is statistically equivalent to that of number plate survey.) 

is not rejected at 0.05 level of significance. 

The orange box overlaps with black box, indicating that the CUPRITE can estimate the true actual 

travel time. It can be seen that even the short term oversaturation in the system can be accurately 

estimated. For instance, in Figure 5-16: fourth, fifth, sixth and seventh estimation intervals (time from 

15:30 hr to 16:00 hr) are congestion build up, and there is significant variation in average travel time 

between the three periods. This fluctuation is also captured accurately by CUPRITE.  
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For A→DLft: the accuracy (5.9) of the CUPRITE model increases from 92.3% to 94.6% with increase 

in number of probes from one probe per estimation interval (see Figure 5-16) to three probes per 

estimation interval (see Figure 5-18), respectively. 

For A→DThru: the accuracy (5.9) of the CUPRITE model increases from 88% to 92% with increase in 

number of probes from one probe per estimation interval (see Figure 5-19) to three probes per 

estimation interval (see Figure 5-21), respectively. 
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Figure 5-16: Results for A→DLft with Sn = 1.  
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Figure 5-17: Results for A→DLft with Sn = 2.  
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Figure 5-18: Results for A→DLft with Sn = 3.  
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Figure 5-19: Results for A→DThru with Sn = 1.  

  

0

50

100

150

200

250

15:00:00 15:30:00 16:00:00 16:30:00 17:00:00 17:30:00 18:00:00

T
ra

v
e
l t

im
e
 (

se
c
o

n
d

s)

Time (hr:mm:ss)

Survey 

Individual vehicle  

A →DThru (Sn=2) 

Accuracy (%) = 1-MAPE= 91.3% 

Reject null hypothesis (H0) 

Do not reject null hypothesis (H0) 

CUPRITE 

 

Figure 5-20: Results for A→DThru with Sn = 2.  
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Figure 5-21: Results for A→DThru with Sn = 3.  

5.3.2 Case Leg 2: (D→I) 

For this route the number plate survey data corresponds to the vehicles observed at upstream detector 

dd and downstream detector is2 (see Figure 5-14). Hence, CUPRITE is applied with upstream 

cumulative plot defined by the counts from dd and downstream cumulative plot defined by counts from 

is2 and signal timings at intersection I. Route from D to I is equivalent to 65% mid-link gain of 

vehicles. Less than 35% of the vehicles are captured in the survey. The signal cycle time at intersection 

I is around 50 s and if we consider five signal cycles then only few number of survey vehicles are 

available in each estimation interval. Hence to represent the results we consider ten signal cycles as 

travel time estimation interval. The results for estimation interval of five signal cycles are presented in 

Appendix E . The survey results are available from 15:23:00 onwards. The results with consideration 

of one, two and three probes per estimation interval are illustrated in Figure 5-22, Figure 5-23 and 

Figure 5-24, respectively.  

The accuracy from CUPRITE increases from 87.7% to 92 % with one to three probes per estimation 

interval, respectively. For more than one probe per estimation interval, the null hypothesis is not 

rejected in any of the estimation intervals. Individual vehicles captured from survey are also illustrated 

in the figures. It can be seen that not many vehicles are captured in each estimation interval, due to 

which there is higher inter quartile range for the confidence bounds for ground truth travel time from 

survey vehicles. Nevertheless, the fluctuations in time series of average travel time is well represented 

from the survey data and CUPRITE application could easily capture this behavior.  
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Figure 5-22: Results for D→I with Sn = 1.  
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Figure 5-23: Results for D→I with Sn = 2.  
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Figure 5-24: Results for D→I with Sn = 3.  

5.3.3 Case Leg 3: (I→K) 

The number plate survey is for vehicles which are traversing on lane 2 (see Figure 5-15) i.e., vehicles 

observed at detector im2 at upstream and detector ks2 at downstream are surveyed. Hence, CUPRITE is 

applied with detector data from detectors im2 and ks2 and the results presented here are travel time on 

lane 2 of the route I→K. The survey data is available from 16:19 hours to 18:00 hours. 

The accuracy (5.9) of the CUPRITE increases from 83.5% to 92% with increase in number of probes 

from one probe (see Figure 5-25) to three probes (see Figure 5-27) per estimation interval, 

respectively. Consistent with the previous application, it also captures the micro travel time 

fluctuations amongst the estimation intervals. The null hypothesis is also not rejected in most of the 

estimation interval.  

The validation of the model on this leg provides confidence that the model can be successfully applied 

to routes with significant mid-link delay.  

Note: This case is analogous to configuration where detector is only on a representative lane, assuming 

lane 2 as representative lane. CUPRITE can accurately estimate travel time for each lane of the link.  
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Figure 5-25: Results for I→K with Sn = 1.  
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Figure 5-26: Results for I→K with Sn = 2.  
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Figure 5-27: Results for I→K with Sn = 3.  

5.3.4 Case RE Vs RC 

Extreme based (Section 4.2.1.1) and Component based (Section 4.2.1.2) approaches are compared for 

route A→F; route D→I; and route D→K. For detail results refer to Appendix D , Appendix E  and 

Appendix F . For Component based estimation, time-slice method (Section 4.2) is considered.  

Figure 5-28, Figure 5-29 and Figure 5-30 summarize the accuracy for three routes for Extreme based 

and Component based estimation for one, two and three probes per estimation interval, respectively. It 

is observed that Component based estimation performs better than Extreme based though additional 

data corresponding to each component for the route is required.  
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Figure 5-28: Results of Extreme based and Component based travel time estimation for 
different routes with Sn = 1.  
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Figure 5-29: Results of Extreme based and Component based travel time estimation for 
different routes with Sn = 2. 
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Figure 5-30: Results of Extreme based and Component based travel time estimation for 
different routes with Sn = 3. 

5.3.5 Case Sp 

The above cases consider fixed number (Sn) of probes per estimation interval. This section presents the 

results for CUPRITE application where probes are percentage (Sp) of vehicles traversing the route 

during three hour of survey period. Hence in an estimation period there can be no probe (Sn = 0) or at 

least one probe (Sn > 0).  The results for route A→DLft with SP equal to 1%, 2% and 3% are illustrated 

in Figure 5-31, Figure 5-32 and Figure 5-33, respectively. There is increase in accuracy from 83.5% to 

92.3% with increase in Sp from 1% to 3%, respectively.  Figure 5-34 illustrates the frequency 

distribution of estimation intervals versus Sn for different Sp values. For Sp = 1%, more than 50% of the 

estimation periods have no probe (Sn = 0); and the percentage of estimation intervals with Sn = 0 

decreases with increase in Sp. The results indicate that even with 1% of probes CUPRITE can capture 

the fluctuation in time series of travel time. In most of the estimation intervals for Sp equal to 2% and 

3%, the null hypothesis is not rejected indicating that CUPRITE estimates are statistically equivalent 

to the number plate survey.  
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Figure 5-31: Results for A→DLft with Sp=1%.  
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Figure 5-32: Results for A→DLft with Sp=2%.  
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Figure 5-33: Results for A→DLft with Sp=3%.  
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Figure 5-34: Percentage of estimation intervals versus Sn for route A→DLft.  
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5.4 Concluding remarks 

In this chapter, CUPRITE is validated on real data from number plate survey on signalized urban 

network at Lucerne, Switzerland. CUPRITE is applied on different routes with following 

characteristics: 

i. detector counting error; 

ii. mixed traffic (with buses); 

iii. on-street bus stops;  

iv. significant loss and gain from mid-link sinks and sources, respectively; 

v. significant mid-link delay due to pedestrian crossing; and 

vi. urban links passing through the city centre.  

Travel time for different turning movements on a route is also considered.  

Two tailed t-tests are computed to determine if difference exists between the real travel time from 

survey and CUPRITE application. The tests were considered significant at the 0.05 and the result of 

the tests indicates that travel time estimates from CUPRITE are statistically equivalent to real 

estimates from number plate survey.  

From this, we can conclude that CUPRITE can be successfully applied for travel time estimation on 

urban networks. It can accurately estimate travel time for different exit turning movements and route 

travel time. It can also accurately capture the short term oversaturation in the system.  

The application of CUPRITE using Extreme based and Component based travel time estimation is also 

validated. The results indicate that the component based estimation has the potential to increase the 

accuracy. Though, additional data from each component of a route is required.  

Equation Chapter (Next) Section 1 
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6 Conclusions 

6.1 Research contributions 

The methodology, CUPRITE, developed in this research addresses the following complexities for 

travel time estimation on urban networks: 

i. Interruptions in traffic flow due to conflicting areas;  

ii. Significant proportion of flow to/from mid-link sinks/sources; 

iii. Detector counting error; and 

iv. Travel time for different exit movements. 

CUPRITE is based on classical analytical procedure for travel time estimation. The classical procedure 

is vulnerable to relative deviation amongst the cumulative plots due to mid-link sinks and sources, and 

detector counting error. These issues are addressed by integrating detector data, signal timings and 

probe vehicle data. First, detectors and signal timings are integrated to obtain cumulative plots at 

different locations on the network. Thereafter, probe vehicle data is utilized to enhance the accuracy of 

travel time estimation. The performance of the methodology during each step of its development is 

thoroughly tested using simulated data. Finally, it is validated with real data.  

The exhaustive testing of CUPRITE is performed for both undersaturated and oversaturated traffic 

conditions. For undersaturated traffic condition, the concept of virtual probe is introduced and it 

provides accurate estimates (Accuracy more than 95%) without the need of real probe. It is observed 

that the use of real probes in addition to virtual probes can slightly decrease the accuracy by around 

3% compared to the case when only virtual probe is considered. However, the real probe data is a real 

data and its use provides confidence in correction of relative deviation amongst the plots. For 

oversaturated traffic condition or situations where virtual probe cannot be used, the integration of real 

probe data with cumulative plots significantly enhances the accuracy. It is concluded that only one 

probe per estimation interval or three percent of vehicles traversing as probe can provide accuracy 

(overall average performance) of more than 95% irrespective of the magnitude of sink, source or 

detector counting error.  

One of the major limitations of the existing travel time estimation models is that the travel time 

provided is average for the whole link. Generally to estimate movement specific link travel time, 

penalties (s) are added to the average link travel time. For ITS applications more robust and accurate 

movement specific travel time is required. The application of the CUPRITE for estimation of 

movement specific travel time for a link and its utilization for the route travel time estimation is 

discussed. Two different approaches: a) Component based; and b) Extreme based, are introduced. Both 

the approaches provide similar results. Component based is more reliable with greater chances of 

probe vehicle in each interval, though additional data from each component is required. Extreme based 

is simple, and only requires data from upstream and downstream of the route but chances of obtaining 

a probe that traverses the entire route might be low. 

The methodology is also compared with a model solely based on probe data (Probe-Only). For 

Probe-Only significantly large numbers of probes (more than 10) are required to obtain accuracy 

comparable to that of CUPRITE. Moreover, if few probes per estimation interval are available then 

travel time estimates from Probe-Only are unreliable. For instance, with one probe per estimation 

period, the standard deviation of accuracies from Probe-Only is around 10% whereas, that from 
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CUPRITE is around 4%. Hence it can be concluded that the integration of multisource data not only 

improves the accuracy but also the reliability of travel time estimates.  

The real data for the validation is obtained through number plate survey at a site in Lucerne city, 

Switzerland. The study site is a typical urban network with following characteristics: a) mixed traffic 

(with buses); b) on-street bus stops; c) significant loss and gain from mid-link sinks and sources, 

respectively; and d) significant mid-link delays due to pedestrian crossing. The loop detectors on the 

site are not perfect.  

CUPRITE is applied at the above site for estimating travel time for different movements on a link and 

travel time for different routes. Two tailed t-test (at 0.05 level of significance) results confirm that the 

travel time estimates from CUPRITE are statistically equivalent to real estimates from number plate 

survey data. Validation results also indicate that CUPRITE can accurately capture the time series of 

travel time and short-term oversaturation in the system.  The application of CUPRITE using Extreme 

based and Component based travel time estimation is also validated. The results indicate that the 

component based estimation has the potential to increase the accuracy. Though, additional data from 

each component of a route is required.  

The testing and validation of CUPRITE has demonstrated that it can be successfully applied for 

accurate and reliable travel time estimation on urban networks. Hence, the goals and objectives of this 

research defined earlier in Section 1.4 are achieved. The principal contributions of this research can be 

summarized as follows: 

v. A new methodology for travel time estimation on urban networks. It exploits 

advantages of both traffic detector counts and probe vehicle data. It addresses the 

weakness of individual data sources, by integrating the data from different sources for 

accurate and reliable travel time estimation.  

vi. The methodology provides exit movement specific travel time and hence detailed 

understanding of the network performance. For instance, excessive travel time for an 

exit movement can identify the critical movement at an intersection. 

vii. The methodology is robust with respect to mid-link sinks and sources, and detector 

counting error. Hence, have better network applicability.   

viii. It can capture accurate time series of travel time and also short-term oversaturated 

situations. Hence can be applied for developing historical database, which is the basic 

requirement for travel time prediction. 

ix. The methodology only needs one probe per estimation interval or less than 3% of 

vehicles traversing the link as probe for accurate travel time estimates. The current 

probe market penetration is low and therefore the requirement of few numbers of 

probes makes the methodology directly applicable. 

x. Though the development of methodology is based on urban networks, but it can be 

equally applied to freeway facilities. It can be easily integrated with traffic monitoring 

system to simultaneously monitor both urban and freeway networks. 

6.2 Future research directions 

In this research the plot of cumulative counts versus time for both U(t) and D(t) are represented in the 

same figure (two dimensional plot). Therefore, the probe data utilized is the time when it is at 

upstream and downstream intersection. For future research, it is recommended that three-dimension 

modeling should be considered. This includes a) cumulative counts; b) time; and c) location from 

upstream to downstream. The above three dimensional representation of cumulative plots should be 

integrated with trajectory of the probe vehicle for more detailed modeling. This should provide better 

understanding of the shock-wave propagation and traffic flow characteristics. 
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The aim for integrating cumulative plots with probe vehicle is to reduce RD. For this the downstream 

cumulative plot is considered as accurate and upstream cumulative plot is redefined. Practically, we do 

not know which cumulative plot is responsible for RD and considering D(t) as accurate and redefining 

U(t) approach works well as is evident from the testing and validation results in this report. It is 

expected that further improvement in accuracy is possible if we simultaneously correct both U(t) and 

D(t) for reduction of RD. It should be worth extending the research further to define approaches for 

simultaneous correction of errors in estimation of both U(t) and D(t).  

CUPRITE provides average travel time, which is a standard indicator for network performance 

measure and an important input for number of transport analysis. Travel time on an urban link is bi-

modal and hence different statists such as quartiles should also be explored. The application of 

CUPRITE for estimation of quartile of travel time is presented in Error! Reference source not 

ound..   

Furthermore, this research can be extended in the following avenues by integrating CUPRITE with:  

1. Time series modeling tools for travel time prediction.  

2. Public Transport Priority Systems (PTPS) to improve the PTPS efficiency and reliability. 

3. Signal control algorithm to optimize its parameters.  

6.2.1 Travel time prediction 

The objective of this research is to accurately estimate travel time, which is the experienced travel 

time. Travel time estimates from CUPRITE are not predicted travel time i.e. it is not predicting the 

expected value of travel time in next five minutes or so. CUPRITE can be extended for travel time 

prediction because the basic requirement for any travel time prediction tool is accurate travel time 

estimation. Prediction tools such as time series analysis, pattern recognition etc. require accurate 

historical database for travel time. The development of database for urban network is challenging as 

most of the urban sites are not equipped with advance direct travel time measurement equipments such 

as AVI and the ground truth travel time is unavailable. Generally, it is recommended to use probe 

vehicle for development of database. However, a large number of probes per estimation interval are 

required for statistically accurate travel time estimation. CUPRITE provides accurate estimation of 

travel time with low number of probes. Hence, it has the potential to develop an accurate database of 

travel time. It can be extended by integrating with prediction tools for accurate travel time prediction.  

6.2.2 Integration with Public Transport Priority Systems  

A hybrid model can be developed by integrating CUPRITE with public transport (bus) vehicle data. 

The hybrid model should differentiate between vehicle travel time and bus travel time on the link. It 

should predict the time when the bus should be at the stop-line, taking into account the variability of 

travel time of the bus. The hybrid model should be useful for testing different strategies for Public 

Transport Priority Systems (PTPS) and should enhance the efficiency of PTPS.  

6.2.3 Feedback to signal control algorithm 

A feedback model from CUPRITE to signal control algorithm can be developed with the objective to 

optimize signal controller parameters. Such direct optimization method has never been used in practice 

due to difficulty in getting accurate performance measures in real-time. The optimization of the signal 

control parameters would enhance the performance of controller, resulting in reduced delay, less 

number of stops at intersection which in turn would reduce energy consumption and vehicle emissions.  
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Appendix A  Traffic inductive loop detectors 

This appendix provides brief overview of inductive loop detectors-widely available traffic data 

collection systems. Interested readers can refer to Klein [66] and Klein et al., [101, 102] for detailed 

overview of different traffic data collection systems.  

A.1 Inductive loop detector (ILD) 

Inductive loop detectors (ILD) as the name implies are loop detectors that apply the simple principle of 

induction to detect vehicle over them. For this multiple turns of induction wires in loops are embedded 

in the pavement and connected to a control device. The wires are excited by a signal ranging in 

frequency from 10 kHz to 200 kHz. When a vehicle passes over or rests on the loop then the metal in 

the vehicle generates eddy currents which reduce the induction of the loop. The decreased inductance 

causes the resonance frequency to increase from its normal value. Traditionally, if the frequency 

change exceeds the threshold set by the sensitivity setting then the presence of a vehicle is defined. 

Therefore, loop detector devices are presence type i.e., provide ‗1‘ (on) and ‗0‘ (off) information for 

the vehicle presence. A single loop detector can only provide the counts (flow) and occupancy. Dual 

loop detectors i.e., two single loop detectors on a short distance from each other on the same link can 

also provide the speed considering the time difference between the signals produced between first and 

second loop. 

A.1.1 DETECTOR ERROR 

Data from detectors are generally accurate in free-flow conditions but less accurate when lane 

discipline is poor and when traffic is congested. Following are some of the reasons for overcounting 

and/or undercounting from the detector:  

i. Cross-talk: primarily occur when one inductive loop (A) activates another loop detector 

(B) in adjacent lane or nearby. This leads to false detection of vehicle in loop B. For 

instance, say loop A and B are in adjacent lane, and when vehicle passes over loop A, 

then it changes the magnetic field of loop A which can interfere with the magnetic field 

of loop B and causing a false change in induction of loop B.  

The remedy for cross-talk includes: setting minimum spacing (at least 2 m) between the 

two adjacent detectors; different frequency settings for adjacent detectors; different 

number of turns in the loop for instance 3 turns in one and 4 turns in other etc.  

ii. Pulse break up: involves gaps in detector actuation data, which may be incorrectly 

interpreted as different vehicles.  

iii. Closely spaced vehicle: If the spacing between the vehicles is low for instance, during 

congested conditions then two consecutive vehicles may not be differentiated, resulting 

in detector undercounting.  

iv. Hanging (on or off): Detector may be malfunctioning and showing same value for a 

longer time period.  

Most of the above issues can be addressed by data filter such as: 

i. Pulses or gaps less than certain threshold can be ignored.  

ii. Comparing detector on time with average on time of all the other detectors in the 

station.  
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iii. Comparing detector data against realistic threshold at regular time intervals.  

A.2 Advanced loop detectors 

The actual inductance curve produced by the vehicle passing by is not a simple peak. Due to 

complicated arrangement of metal part on the vehicle there are different sets of induction changes 

when the vehicle passes on the detector.  

Advance detector data acquisition system for instance, digitizing the detector output and applying 

advance signal processing algorithms can provide key features of the vehicle's characteristics and 

behavior, rather than simply defining vehicle presence when the inductance change exceeds the 

threshold. These detectors can also be terms as smart loop detectors and are able to separate vehicles 

as well as measure their number of axles, vehicle type, speed and direction of movement. These 

detectors are often used in conjunction with automatic vehicle classification technology. These 

detectors can be used for vehicle reidentification and travel time measurements using pairs of loop 

detectors (Refer to Section 2.2.8).  

A.3 Detector location on urban environment 

In urban environment detectors are traditionally used for signal control, therefore their location on an 

urban link is primarily determined by the type of the signal controller. SCATS requires stop-line 

detectors where as SCOOTS requires detectors at the up-stream of the link. Certain Public Transport 

Priority Systems (PTPS) requires detectors at the mid-link. On an urban link there can be several 

combinations of different detector positions.  

A combination of detectors at the survey site described in Section 5.2 (Lucerne City), in order of their 

position from the stop-line is as follows: 

i. Stop-line detectors: are just before or after the stop-line marking at the intersection. 

They are 1.5 ~ 2 m in length.  

ii. Strategic detectors: are slightly upstream of the stop-line and are 12 m in length. These 

detectors detect the queue and are not good for vehicle counts due to their longer 

lengths.  

iii. Call detectors: They are approximately 60 m upstream of the stop-line and are 1.5 ~ 2 

m in length. These detectors are used to define green-signal call for PTPS.  

iv. Traffic-jam detectors: These detectors are near to up-stream entrance of the link and are 

of 5 m in length. Traffic-jam detectors as the name implies detect the queue extending 

to the up-stream entrance of the link.  

Equation Chapter (Next) Section 1 
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Appendix B  AIMSUN 

The appendix provides short introduction to AIMSUN. For detailed discussion refer to the user manual 

of AIMSUN.  

AIMSUN is abbreviation for Advanced Interactive Microscopic Simulator for Urban and Non-Urban 

Networks. AIMSUN is a microscopic traffic simulator and the basic structure is as follows: Vehicles 

enter the network at network entry points and their movements through the network are determined by 

behavioral models such as, car following, lane changing, and gap acceptance. Each vehicle is assigned 

a set of vehicle and driver attributes which are used by the behavioral models to model the vehicle 

movement. 

AIMSUN can function as either a stochastic model, where vehicles travel through the network based 

on turn probabilities, or a traffic assignment model using Origin Destination tables. It can also 

consider dynamic traffic assignment, where optimum vehicle paths between centroids are computed at 

the beginning of the simulation and then updated based on feedback from the network. Thus, route 

choice is based on actual traffic conditions and may vary at different points in the simulation. 

The input to the AIMSUN simulator includes simulation scenario and set of simulation parameters that 

define the experiment. The scenario is composed of four types of data: network description, traffic 

control plan, traffic demand data and public transport plans. The simulation parameters are: fixed 

values that describe the experiment such as, simulation time, warm-up period, statistics interval, etc.; 

and variable parameters used to calibrate the models such as reaction times, lane changing zone, etc. 

AIMSUN can provide continuous animated graphical representation of traffic network performance, 

statistical output data (flow, speed, journey times, delays, stops) and data gathered by the simulated 

detectors (counts, occupancy, speed). In addition, the software provided API access through which 

detailed traffic dynamics during simulation can be obtained and controlled as required by user. 

Note: The results from a simulation model are reliable only when its parameters are properly calibrated 

for real world representation of traffic and its behavior. It is important that the simulation model 

outputs are validated with field data. Properly calibrated simulation model has the potential to provide 

data for different traffic scenarios and hence can be used for number of traffic analysis and research 

purposes.  
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Appendix C  Results from CUPRITE testing 

The results illustrated in this appendix are supplement to those presented in Chapter 3. Following 

figures are presented here 

Figure C-1: Comparative results for 10% mid-link source during undersaturated traffic condition. 

Results for accuracy: (a) A5 and (b) AM versus Sn. (Page C-2) 

Figure C-2: Comparative results for 10% upstream detector overcounting during undersaturated traffic 

condition. Results for accuracy: (a) A5 and (b) AM versus Sn. (Page C-3) 

Figure C-3: Comparative results for 10% upstream detector undercounting case during undersaturated 

traffic condition. Results for accuracy: (a) A5 and (b) AM versus Sn. (Page C-4) 

Figure C-4: Comparative results for 10% downstream detector undercounting case during 

undersaturated traffic condition. Results for accuracy: (a) A5 and (b) AM versus Sn. (Page C-5) 

Figure C-5: Case B1 (10% sink) oversaturated traffic condition for FIFO discipline. Results for 

accuracy: (a) A5 and (b) AM versus Sn. (Page C-6) 

Figure C-6: CUPRITE Offline application for different source percentages (5%, 10%, 15% and 20%); 

oversaturated traffic condition; non-FIFO discipline. Results for accuracy: (a) A5 and (b) AM versus 

Sn. (Page C-7) 

Figure C-7: CUPRITE Online application for different source percentages (5%, 10%, 15% and 20%); 

oversaturated traffic condition; non-FIFO discipline. Results for accuracy: (a) A5 and (b) AM versus 

Sn. (Page C-8) 

Figure C-8: Detector counting error with fixed number of probes per estimation interval (Sn) for 

Online application: Case B3. 1 to B3.4: (a) A5 and (b) AM versus Sn. (Page C-9) 

Figure C-9: Reliability of the estimate for case study (B3.1 to B3.4) on detector counting error with 

fixed number of probes per estimation interval (Sn) for a) Offline application and b) Online 

application. (Page C-10) 

Figure C-10: Simultaneous presence of both sink and source. Case B4.2 (10% sink and 20% source): 

(a) A5 and (b) AM versus Sn. (Page C-11) 

Figure C-11: Results for accuracy versus Sp case B3.1 to case B3.4 from CUPRITE offline 

application. (Page C-12) 

Figure C-12: Results for accuracy versus Sp case B3.1 to case B3.4 from CUPRITE online application. 

(Page C-13) 

Figure C-13: Simultaneous presence of both sink and source. Case B4.3 (10% sink and 10% source): 

(a) A5 and (b) AM versus Sn. (Page C-14) 

Figure C-14: Simultaneous presence of both sink and source. Case B4.4 (20% sink and 20% source): 

(a) A5 and (b) AM versus Sn. (Page C-15) 

Figure C-15: Simultaneous presence of both sink and source. Case B4.5 (50% sink and 50% source): 

(a) A5 and (b) AM versus Sn. (Page C-16) 

Figure C-16: Simultaneous presence of both sink and source. Case B4.6 (90% sink and 90% source): 

(a) A5 and (b) AM versus Sn. (Page C-17) 

Figure C-17: Simultaneous presence of sink, source and detector counting error. Case B4.7 (10% sink; 

10% source; both u/s and d/s detectors undercounting by 10%): (a) A5 and (b) AM versus Sn. (Page 

C-18C-2) 
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Figure C-18: Results for case B4.8 (10% sink; 10% source; both u/s and d/s detectors overcounting by 

10%): (a) A5 and (b) AM versus Sn. (Page C-19) 
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Case Study : A2.2 and A3.2 (10% Source) Undersaturated traffic 

 

CUPRITE Offline/Online (Case V+R) 

HCM 2000 

Probe-Only 

CUPRITE Offline/ Online (Case R) 

CUPRITE only virtual probe (Sn=0) 

CUPRITE Offline/Online (Case V+R) 

HCM 2000 

Probe-Only 

CUPRITE Offline/ Online (Case R) 

CUPRITE only virtual probe (Sn=0) 

 

Figure C-1: Comparative results for 10% mid-link source during undersaturated traffic condition. 
Results for accuracy: (a) A5 and (b) AM versus Sn. 
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Case Study : A2.3 and A3.3 (10% u/s detector overcounting) Undersaturated situation 

 

(a) 

(b) 

CUPRITE Offline/Online (Case V+R) 

HCM 2000 

Probe-Only 

CUPRITE Offline (Case R) 

CUPRITE Online (Case R) 

CUPRITE only virtual probe (Sn=0) 

CUPRITE Offline/Online (Case V+R) 

HCM 2000 

Probe-Only 

CUPRITE Offline (Case R) 

CUPRITE Online (Case R) 

CUPRITE only virtual probe (Sn=0) 

 

Figure C-2: Comparative results for 10% upstream detector overcounting during undersaturated 
traffic condition. Results for accuracy: (a) A5 and (b) AM versus Sn. 
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Case Study : A2.4 and A3.4 (10% u/s detector undercounting) Undersaturated situation 

(a) 

(b) 

CUPRITE Offline/Online (Case V+R) 

HCM 2000 

Probe-Only 

CUPRITE Offline (Case R) 

CUPRITE Online (Case R) 

CUPRITE only virtual probe 

CUPRITE Offline/Online (Case V+R) 

HCM 2000 

Probe-Only 

CUPRITE Offline (Case R) 

CUPRITE Online (Case R) 

CUPRITE only virtual probe 

 

Figure C-3: Comparative results for 10% upstream detector undercounting case during 
undersaturated traffic condition. Results for accuracy: (a) A5 and (b) AM versus Sn. 
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Case Study : A2.6 and A3.6 (10% d/s detector undercounting) Undersaturated situation 

(a) 

(b) 

CUPRITE Offline/Online (Case V+R) 

HCM 2000 

Probe-Only 

CUPRITE Offline (Case R) 

CUPRITE Online (Case R) 

CUPRITE only virtual probe 

CUPRITE Offline/Online (Case V+R) 

HCM 2000 

Probe-Only 

CUPRITE Offline (Case R) 

CUPRITE Online (Case R) 

CUPRITE only virtual probe 

 

Figure C-4: Comparative results for 10% downstream detector undercounting case during 
undersaturated traffic condition. Results for accuracy: (a) A5 and (b) AM versus Sn. 
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Case Study : B1 (10% Sink) Oversaturated situation (FIFO) 

(a) 

(b) 

Probe-Only 

CUPRITE Offline  

CUPRITE Online 

Probe-Only 

CUPRITE Offline  

CUPRITE Online 

 

Figure C-5: Case B1 (10% sink) oversaturated traffic condition for FIFO discipline. Results for 
accuracy: (a) A5 and (b) AM versus Sn.  
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Case Study : B2.2 (5%,10%, 15% and 20% Source) Oversaturated  

(a) 

(b) 
 

Figure C-6: CUPRITE Offline application for different source percentages (5%, 10%, 15% and 
20%); oversaturated traffic condition; non-FIFO discipline. Results for accuracy: (a) A5 and (b) 
AM versus Sn. 
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Case Study : B2.2 (5%,10%, 15% and 20% Source) Oversaturated  

(a) 

(b) 
 

Figure C-7: CUPRITE Online application for different source percentages (5%, 10%, 15% and 
20%); oversaturated traffic condition; non-FIFO discipline. Results for accuracy: (a) A5 and (b) 
AM versus Sn.  
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ONLINE application 
Case Study : B3.1 to B3.4 :  Detector Counting Error 

 

Figure C-8: Detector counting error with fixed number of probes per estimation interval (Sn) for 
Online application: Case B3. 1 to B3.4: (a) A5 and (b) AM versus Sn. 
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Figure C-9: Reliability of the estimate for case study (B3.1 to B3.4) on detector counting error 
with fixed number of probes per estimation interval (Sn) for a) Offline application and b) Online 
application.  
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Figure C-10: Simultaneous presence of both sink and source. Case B4.2 (10% sink and 20% 
source): (a) A5 and (b) AM versus Sn. 
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Case Study : B3.1 to B3.4 (Sp) OFFLINE 

 

Figure C-11: Results for accuracy versus Sp case B3.1 to case B3.4 from CUPRITE offline 
application.  
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Case Study : B3.1 to B3.4 (Sp) ONLINE 

 

Figure C-12: Results for accuracy versus Sp case B3.1 to case B3.4 from CUPRITE online 
application. 
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Figure C-13: Simultaneous presence of both sink and source. Case B4.3 (10% sink and 10% 
source): (a) A5 and (b) AM versus Sn. 
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Figure C-14: Simultaneous presence of both sink and source. Case B4.4 (20% sink and 20% 
source): (a) A5 and (b) AM versus Sn. 
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Figure C-15: Simultaneous presence of both sink and source. Case B4.5 (50% sink and 50% 
source): (a) A5 and (b) AM versus Sn. 
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Figure C-16: Simultaneous presence of both sink and source. Case B4.6 (90% sink and 90% 
source): (a) A5 and (b) AM versus Sn. 
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Figure C-17: Simultaneous presence of sink, source and detector counting error. Case B4.7 (10% 
sink; 10% source; both u/s and d/s detectors undercounting by 10%): (a) A5 and (b) AM versus Sn.  
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Figure C-18: Results for case B4.8 (10% sink; 10% source; both u/s and d/s detectors 
overcounting by 10%): (a) A5 and (b) AM versus Sn. 





 

 
D-1 

Appendix D  Validation results for route A→F 

This appendix provides results for travel time estimation for route A→I using Extreme based 

estimation; and Component based estimation. The components considered for latter case are: A→DLft 

and DLft→F. The results are supplement to the subsection 5.3.4  

D.1 Extreme based estimation (A→F) 
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Figure D-1: Extreme based results for A→F (Sn=1).  
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Figure D-2: Extreme based results for A→F (Sn=2).  
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Figure D-3: Extreme based results for A→F (Sn=3).  
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D.2 Component based estimation (A→DLft→F) 
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Figure D-4: Component based results for A→DLft→F (Sn=1).  
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Figure D-5: Component based results for A→DLft→F (Sn=2).  
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Figure D-6: Component based results for A→DLft→F (Sn=3).  
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Appendix E  Extended results for route D →I  

In continuation to the validation results presented in section 5.3.2, this appendix contains results from 

intersection D to intersection I with travel time estimation interval of five signal cycles (at intersection 

I). The signal cycle time varies from 42 s to 55 s and on average the estimation interval is around 4 

min.  

E.1 Results for estimation interval of five signal cycle 

Figure E-1 presents the number of survey vehicles per estimation intervals. It can be seen that few of 

the estimation intervals have less than three survey vehicles (i.e., period 22, 23 and 27). For estimation 

interval 23, there is only one survey vehicle. Statistically, if sample size is small then confidence 

bound is large and for sample size of one the confidence bound is infinite. Therefore, for period 23, the 

confidence bounds for survey travel time is not indicated in the results.  
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Figure E-1: Number of survey vehicles in estimation interval of 5 times the signal cycle. 

Figure E-2, Figure E-3 and Figure E-4 presents the results with one, two and three probes per 

estimation interval, respectively. The accuracy increases from 88.7% to 93.5% with increase in 

number of probes from one to three. The estimation interval is around four minutes. From the results 

we can conclude that CUPRITE can capture the fluctuations in travel time on urban networks and can 

accurately estimate travel time for short estimation intervals. 
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Figure E-2: Extreme based results for D→I (Sn=1). 
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Figure E-3: Extreme based results for D→I (Sn=2). 
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Figure E-4: Extreme based results for D→I (Sn=3).  
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E.2 Component based estimation (D→F→I) 
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Figure E-5: Component based results for D→F→I (Sn=1).  
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Figure E-6: Component based results for D→F→I (Sn=2).  
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Figure E-7: Component based results for D→F→I (Sn=3).  
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Appendix F  Validation results for route D→K 

This appendix provides results for travel time estimation for route A→K using Extreme based 

estimation; and Component based estimation. The components considered for latter case are: D→F, 

F→I and I→K. The results are supplement to the subsection 5.3.4  

F.1 Extreme based estimation (D→K) 
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Figure F-1: Extreme based results for D→K (Sn=1).  
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Figure F-2: Extreme based results for D→K (Sn=2).  
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Figure F-3: Extreme based results for D→K (Sn=3).  
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F.2 Component based estimation (D→F→I→K) 
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Figure F-4: Component based results for D→F→I→K (Sn=1).  

0

100

200

300

400

500

600

700

800

900

16:19:00 16:34:00 16:49:00 17:04:00 17:19:00 17:34:00 17:49:00

T
ra

v
e
l t

im
e
 (

se
c
o

n
d

s)

Time (hr:mm:ss)
  

D→F→I→K (Sn=2) 

Accuracy (%) = 1-MAPE= 91.4% 

Reject null hypothesis (H0) 

Do not reject null hypothesis (H0) 

Survey 

CUPRITE 
Individual vehicle  

 

Figure F-5: Component based results for D→F→I→K (Sn=2).  
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Figure F-6: Component based results for D→F→I→K (Sn=3). 
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Appendix G  Validation results for route A→I 

This appendix provides results for travel time estimation for route A→I using Extreme based 

estimation; and Component based estimation. The components considered for latter case are: A→DLft, 

DLft→F and F→I. The results are supplement to the subsection 5.3.4  

G.1 Extreme based estimation (A→I) 
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Figure G-1: Extreme based results for A→I (Sn=1).  
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Figure G-2: Extreme based results for A→I (Sn=2).  
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Figure G-3: Extreme based results for A→I (Sn=3).  
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G.2 Component based estimation (A→DLft→F→I) 
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Figure G-4: Component based results for A→DLft→F→I (Sn=1).  
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Figure G-5: Component based results for A→DLft→F→I (Sn=2).  
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Figure G-6: Component based results for A→DLft→F→I (Sn=3).  
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Appendix H  CUPRITE application for 
estimation of  quartile of  travel time 

This appendix provides discussion on CUPRITE application for estimation of quartile of travel time.  

By definition quartile is any value that divides the sorted data into equal parts: 

i. Q1: the first quartile is the 25th percentile and 25% of the data is lower than Q1.  

ii. Q2: the second quartile is the 50th percentile (or median) and it divides the data into two 

equal parts. 

iii. Q3: the third quartile is the 75th percentile and 75% of the data is lower than Q3. 

To obtain quartiles of travel time from CUPRITE we need to first estimate individual vehicle travel 

time. For this we apply the following slicing technique to define a pair of vehicles with similar travel 

time and thereafter estimate quartiles.  

H.1 Slicing technique 

We define cumulative plot as a polyline with M as the matrix of nodes for the polyline.  For a travel 

time estimation interval, the total area A between the cumulative plots, is fragmented into different 

areas (Ai) (see Figure H-1), by horizontal cuts corresponding to the nodes at MU (node matrix for U(t)) 

and MD (node matrix for D(t)) and with the following constraint: For each fragmented area, Ai, if the 

counts, Ni, are above a certain threshold number, Nthreshold, then the time interval for the arrival, tui, and 

departure, tdi, corresponding to the fragmented area should be below a certain threshold time interval 

(tthreshold). If not, then the area (Ai) is further fragmented by a horizontal cut to satisfy the constraints. 

The process is repeated until each fragmented area satisfies the constraints.  

Finally, each fragmented area (Ai) represents the total travel time for the Ni number of vehicles. 

Assuming that these Ni number of vehicles experience similar travel time ( iTT ) equals to the Ai/Ni. 

Finally, one can obtain the quartiles by sorting the travel time values obtained from all the sliced areas 

and corresponding number of vehicles.  



 Development of urban network travel time estimation methodology 

 
H-2 

Ni

tui tdi

If Ni>Nthreshold

If tui>tthreshold

Else if tdi>tthreshold

tthreshold

Ai2

Ai2

Ai

MU
MD

Ai

i

i
i

i

For N vehicles travel timeis :

A
TT=

N

Time

C
u
m

u
la

ti
v
e 

co
u
n

ts

TEI

A

MU

MD
N

Horizontal 
Cut Ni

tui tdiAi1

tthreshold

Ni

tui tdi

Ai1

Cut for new 
fragment

Node

New node

For each fragmented area Ai

 
 

Figure H-1: Illustration for slicing the area between cumulative plots for defining travel time for 
different pair of vehicles within a estimation interval.   

The algorithm for estimating quartiles using slicing method is as follows: 

For an estimation interval say we have a two dimensional array with first column as list of Ai/Ni (LA/N) 

and second column as list of Ni (LN). Following steps are followed: 

Step 1 Sort the array with respect to the values in the list LA/N; 

Step 2 Define a frequency list (Lf) by cumulating the values in the list LN; 

Step 3 Define N, as total number of vehicles in the estimation interval. This is the last 

element of the above frequency list; 

Step 4  Define the index for the quartiles as follows: 

 Q1_index = 0.25*N 

 Q2_index = 0.5*N 

 Q3_index = 0.75*N 

Step 5 Quartiles are defined as the value corresponding to the jth element of the sorted list 

LA/N where j is the rank of Lf such that: 

 if(j=0) and ( Lf[j] ≥ Q3_index),  

then Q3 = LA/N[0] 

if(j>0) and ( Lf[j-1] < Q3_index) and (Lf[j] ≥ Q3_index),  

then Q3 = LA/N[j] 

Similarly, for Q2 and Q3;  

Note: here the elements of the list start from rank 0. 

For better understanding of the above algorithm a self explaining example is presented in the Figure 

H-2. 
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Original List 
 

Step 1 Step 2 
 

 
Sorted w.r.t Ai/Ni [Cumulative Ni] 

 LA/N 

[Ai/Ni] 
LN 

[Ni] 
 

LA/N 

[Ai/Ni] 
LN 

[Ni] Lf 
 

99.77 2.3 
 

38.46 2.9 2.9 
 68.49 2.3 

 
43.82 2.5 5.4 

 57.91 2.4 
 

47.12 1.2 6.6 
 43.82 2.5 

 
48.35 2.9 9.5 < Q1_index  

76.20 3.2 Q1 → 56.29 2.8 12.3 ≥ Q1_index  

63.74 2.9 
 

57.91 2.4 14.7  

56.29 2.8 
 

60.77 3.2 17.9  

38.46 2.9 
 

62.36 3.0 20.9 < Q2_index  

73.56 2.8 Q2 → 63.74 2.9 23.8 ≥ Q2_index  

62.36 3.0 
 

64.86 3.5 27.3  

48.35 2.9 
 

66.29 3.4 30.7  

77.70 3.1 
 

68.49 2.3 33.0 < Q3_index  

83.96 3.1 Q3 → 73.56 2.8 35.8 ≥ Q3_index  

64.86 3.5 
 

76.20 3.2 38.9 
 60.77 3.2 

 
77.70 3.1 42.1 

 66.29 3.4 
 

83.96 3.1 45.2 
 47.12 1.2 

 
99.77 2.3 47.5 

        

  
Step 3 N= 47.5 

 

  Step 4 

Q1_index =0.25*N = 11.87 
 

  
Q2_index =0.5*N  = 23.74 

 

  
Q3_index =0.75*N  = 35.61 

 
 

Figure H-2: An example for quartile estimation using slicing method.   

H.2 Application 

The above defined slicing technique is applied on the Lucerne data described in Chapter 5 on a route 

from A→DLft and quartile Q3 (75th percentile) is estimated. The results are presented in Figure H-3, 

Figure H-4 and Figure H-5. Here the accuracy of the estimates from CUPRITE is defined as following:  
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Where: Errori is the absolute percentage error for ith estimation interval; 
is

Q and 
iC

Q are the Q3 of 

survey travel time and travel time estimated from CUPRITE application during ith estimation interval, 

respectively; n is the number of estimation intervals; and MAPE is the Mean Absolute Percentage 

Error obtained from the CUPRITE application for different estimation intervals during survey period. 
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Figure H-3: Q3 estimation using CUPRITE for route from A→DLft (Sn=1).  
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Figure H-4: Q3 estimation using CUPRITE for route from A→DLft (Sn=2).  
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Figure H-5: Q3 estimation using CUPRITE for route from A→DLft (Sn=3).  

It is observed that the accuracy increases from 92.4% to 94.7% for increase in Sn from one probe per 

estimation interval to three probes per estimation interval. The results are similar to what we have 
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observed earlier for application of CUPRITE for mean travel time estimation (Refer to Figure 5-16 to 

Figure 5-18). 

The above analysis indicates the potential of CUPRITE for quartile travel time estimation in addition 

to the average travel time estimation.  

Equation Chapter (Next) Section 1 
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RECHERCHE EN MATIERE DE ROUTES DU DETEC ARAMIS RPT 
Formulaire N° 3 : Clôture du projet 
 

établi / modifié le: 25 Janvier 2010 
 
Données de base 

Projet N°: 2006/015 

Titre du projet: Temps de parcours en réseau urbain 

 

Echéance effective: 25 Janvier 2010 

 

Chef de projet 

Nom: Dumont Prénom: André-Gilles 

Service ou entreprise: EPFL – LAVOC 

Rue et N°: Station 18 

NPA: 1015 Email: andre-gilles.dumont@epfl.ch 

Lieu: Lausanne Téléphone: +41 21 693 23 89 

Canton, pays: Vaud – Suisse Fax: +41 21 693 63 49 

 

Textes: 

Résumé des résultats du 
projet: 

Sur un réseau routier, le temps de parcours est un indicateur de performance très important qui quantifie 
la congestion d’une façon compréhensible par tous les usagers. En environnement urbain, l’estimation 
des temps de parcours peut s’avérer complexe en raison d’un certain nombre d’éléments: fluctuations du 
débit du aux feux de signalisation, débit non négligeable provenant de sources/puits sur le parcours etc. 
Dans ce travail, une méthodologie, nommé CUPRITE (CUmulative plots and PRobe Integration for Travel 
timE estimation), a été développée, testée et validée pour l’estimation d’un temps de parcours moyen sur 
un réseau urbain équipé de signalisation lumineuse. Elle fournit un temps de parcours en fonction du 
mouvement spécifique de sortie sur un lien et peut être appliquée pour l’estimation du temps de parcours 
du trajet.  
La procédure de base de méthodologie consiste à utiliser la procédure classique analytique d’utilisation 
des courbes cumulatives en amont et en aval d’un point donné dans le but d’estimer le temps de 
parcours entre deux points. Toutefois, cette procédure est vulnérable face aux erreurs de mesure des 
capteurs et à la non-conservation du débit entre deux points, ce qui entraine des erreurs relatives entre 
les courbes cumulatives (ER). 
L'originalité de méthodologie consiste à intégrer des courbes cumulatives avec des données de véhicule 
traceur avec l'objectif d'aborder la problématique des erreurs relatives (ER).  
De méthodologie a été testée rigoureusement avec des simulations de plusieurs scénarii pour différentes 
combinaisons possibles de « puits » (perte de véhicules à mi-parcours), de sources ou d’erreurs de 
capteurs. Les performances restent stables quels que soient les pourcentages de ces différentes 
perturbations. Pour un lien entre deux intersections signalisées en régime non saturé, le concept de 
véhicule traceur « virtuel » est introduit, qui permet d’estimer précisément les temps de parcours sans 
véhicule traceur réel. Pour des conditions saturées, de méthodologie requiert seulement quelques 
données de véhicules traceurs par intervalle pour une estimation précise du temps de parcours. 
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De méthodologie a également été validée avec des données réelles collectées par reconnaissance de 
plaques d’immatriculation à Lucerne (Suisse). Les résultats des tests de Student bilatéraux (à un niveau 
de significativité de 0.05) confirment que les estimations de temps de parcours de méthodologie sont 
statistiquement équivalentes aux estimations réelles à partir des plaques d’immatriculation. 
Les tests et la validation de méthodologie ont montré que la méthode peut être appliquée pour des 
estimations précises et fiables de temps de parcours. Actuellement, le taux de pénétration des véhicules 
traceurs dans le marché actuel est assez faible et il y a peu de données en milieu urbain. Cependant, 
même avec peu de données “traceurs”, de méthodologie peut améliorer de façon significative la précision 
des estimations de temps de parcours. 

Atteinte des objectifs: The main goal of this research is to develop a methodology that should address the complexities related 
to travel time estimaiton on urban networks. The objectives of the research are as follows: 

i. Develop a methodology for movement specific travel time estimation on urban signalized 
networks; 

ii. Test the methodology under controlled environment; and 

iii. Validate the methodology with real data from a typical urban network with mid-link 
sources and sinks etc. 

In this research a methodology, named CUmulative plots and PRobe Integration for travel timE estimation 
(CUPRITE) has been developed by utilizing the multisource data (detector data, signal timings and probe 
vehicle data).  

The methodology is tested rigorously using traffic simulation for different scenarios. The performance of 
the proposed methodology has been found insensitive to percentage of sink or source or detector error. 

 The methodologyy is also validated with real data collected from number plate survey at Lucerne, 
Switzerland.  

The testing and validation of the methodology has demonstrated that it can be successfully applied for 
accurate and reliable travel time estimation on urban networks. Hence, the goals and objectives of this 
research are achieved. 

Déductions et 
recommandations: 

Detectors are primarily used for signal control; the data has the potential for accurate travel time 
estimation. Moreover, there is increasing use of vehicle tracking equipments such as GPS in taxi fleet, 
where they are used for fleet management. If the data from such system is also used for travel time 
estimation then it should be a significant contribution for managing urban networks.   
 
In this research a new methodology for travel time estimation on urban networks is proposed. It exploits 
advantages of both traffic detector counts and probe vehicle data. It addresses the weakness of individual 
data sources, by integrating the data from different sources for accurate and reliable travel time 
estimation.  
 
The methodology only needs one probe per estimation interval or less than 3% of vehicles traversing the 
link as probe for accurate travel time estimates. The current probe market penetration is low and the 
availability of large number of probes per estimation interval, especially in urban network is quite rate. 
Therefore, the requirement of few numbers of probes makes the methodology directly applicable. 
 
The methodology provides exit movement specific travel time and hence detailed understanding of the 
network performance. For instance, excessive travel time for an exit movement can identify the critical 
movement at an intersection. 
 
The methodology is robust with respect to mid-link sinks and sources, and detector counting error. Hence, 
have better network applicability.   
 
It can capture accurate time series of travel time and also short-term oversaturated situations. Hence can 
be applied for developing historical database, which is the basic requirement for travel time prediction. 
 
Though the development of methodology is based on urban networks, but it can be equally applied to 
freeway facilities with unknown demand from/to ramps. It can be easily integrated with traffic monitoring 
system to simultaneously monitor both urban and freeway networks. 
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