Eidg. Verkehrs- und Energiewirtschaftsdepartement
Bundesamt für Strassenbau

Forschungsauftrag 13/85
auf Antrag der Vereinigung Schweiz. Strassenfachleute (VSS)

KOSTENGLIEDERUNG IM BAUWESEN
(structure des frais du bâtiment et du génie civil)

TEIL I
Grundlagen, Konzepte und Lösungsvorschläge

von
Hans Knöpfel, Dr. sc. techn.
Herbert Notter, Dipl. Bauing. ETH
Alfred Reist, Dipl. Bauing. ETH
Urs Wiederkehr, Dipl. Bauing.ETH

Institut für Bauplanung und Baubetrieb
Eidgenössische Technische Hochschule Zürich

Schlussbericht

© VSS Zürich, Juli 1990, Januar 1991
VORWORT

Die Ermittlung, Festlegung und Beherrschung der Bauleistungen und -kosten sind für ein nutzen-/kostengünstiges Bauen entscheidend und machen einen bedeutenden Teil der Arbeiten der Ingenieure und Architekten sowie der Bauherren aus. In diesem Bericht wird eine einheitliche Grundlage für diese Aufgaben vorgestellt.

Die zweckmäßige Gliederung der Baukosten ist eine wichtige Grundlage für eine wirksame und effiziente Kostenplanung und -kontrolle. Sie soll

- eine anschauliche, rasche, leistungsbezogene und entscheidungsorientierte Kostenberechnung und -beurteilung mittels geeigneter Darstellungen erlauben
- über die ganze Projektdauer von der Vorstudie bis zur Schlussabrechnung und möglichst auch über verschiedene Projekte zutreffende und vergleichbare Zahlen liefern.

Aufgrund der im Bericht vorgestellten Prinzipien, Methoden und Hilfsmittel lassen sich Kosten strukturiert und effizient für verschiedene Ebenen, Projektphasen, Projektbeteiligte und Projektarten erfassen und dann zweckbezogen darstellen.

Der vorliegende Bericht ist das Ergebnis des Forschungsprojekts 047/85, das am Institut für Bauplanung und Baubetrieb in den Jahren 1985-88 bearbeitet wurde. Mit der Publikation dieses Schlussberichts wurde noch bis heute zugewartet, weil an anderer Stelle die Elementkostengliederung (CRB) und die Dokumentation 510 des SIA in Bearbeitung waren.

Das Projekt wurde durch das Eidg. Verkehrs- und Energiewirtschaftsdepartement (Bundesamt für Strassenbau) finanziert und durch die VSS-Kommission 275 (Vorsitz F. Fontana) begleitet.

In diesem Bericht (Teil II) sind die detaillierten Gliederungen und die Anwendungsbeispiele enthalten. Im ersten Bericht (Teil I) sind die Grundlagen, Konzepte und Lösungsvorschläge dargestellt.

Mai 1990

Die Leiter des Forschungsprojektes

Prof. R. Fechtig Dr. H. Knöpfel
Inhaltsverzeichnis Teil I

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Einleitung</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Auftrag</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Grundlagen und Voraussetzungen</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Bestehende Kostengliederungen</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Vorgehen</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Anwendungsbeispiele</td>
<td>9</td>
</tr>
<tr>
<td>1.6 Hoch- und Tiefbau</td>
<td>9</td>
</tr>
<tr>
<td>1.7 Hinweise zum Lesen des Berichts</td>
<td>10</td>
</tr>
<tr>
<td>2. Gesamtkonzept</td>
<td>11</td>
</tr>
<tr>
<td>2.1 Anforderungen</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Gesetzmäßigkeit</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Konzept der Baukostengliederation</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Entwicklung und Darstellung von Katalog-Leistungseinheiten</td>
<td>24</td>
</tr>
<tr>
<td>3. Gliederung von Projekten in Objekte</td>
<td>29</td>
</tr>
<tr>
<td>3.1 Zweck</td>
<td>29</td>
</tr>
<tr>
<td>3.2 Anlagen- und Objektkatalog</td>
<td>32</td>
</tr>
<tr>
<td>3.3 Gliederung praktischer Projekte in Objekte</td>
<td>33</td>
</tr>
<tr>
<td>3.4 Katalog-Leistungseinheiten</td>
<td>37</td>
</tr>
<tr>
<td>3.5 Weitere Aspekte</td>
<td>38</td>
</tr>
<tr>
<td>4. Baukosten-Kontenplan</td>
<td>39</td>
</tr>
<tr>
<td>4.1 Zweck</td>
<td>39</td>
</tr>
<tr>
<td>4.2 Genereller Aufbau</td>
<td>41</td>
</tr>
<tr>
<td>4.3 Praktische Zuordnung von Kosten zu den Konten</td>
<td>46</td>
</tr>
<tr>
<td>4.4 Katalog-Leistungseinheiten</td>
<td>48</td>
</tr>
<tr>
<td>4.5 Weitere Aspekte</td>
<td>48</td>
</tr>
<tr>
<td>5. Elementgliederung</td>
<td>50</td>
</tr>
<tr>
<td>5.1 Zweck</td>
<td>50</td>
</tr>
<tr>
<td>5.2 Genereller Aufbau</td>
<td>54</td>
</tr>
<tr>
<td>5.3 Ueberprüfung anhand von Beispielen</td>
<td>57</td>
</tr>
<tr>
<td>5.4 Katalog-Leistungseinheiten</td>
<td>58</td>
</tr>
<tr>
<td>5.5 Weitere Aspekte</td>
<td>60</td>
</tr>
<tr>
<td>6.1 Zweck</td>
<td>61</td>
</tr>
<tr>
<td>6.2 Genereller Aufbau</td>
<td>61</td>
</tr>
<tr>
<td>6.3 Einige praktische Aspekte der Ausführung</td>
<td>63</td>
</tr>
<tr>
<td>6.4 Katalog-Leistungseinheiten</td>
<td>63</td>
</tr>
<tr>
<td>6.5 Weitere Aspekte</td>
<td>65</td>
</tr>
<tr>
<td>7. Anwendung</td>
<td>67</td>
</tr>
<tr>
<td>7.1 Konzept Kostenüberwachung</td>
<td>67</td>
</tr>
<tr>
<td>7.2 Erfahrungen aus den Praxistests</td>
<td>76</td>
</tr>
<tr>
<td>7.3 Beurteilungen und Empfehlungen</td>
<td>77</td>
</tr>
<tr>
<td>8. Literatur</td>
<td>79</td>
</tr>
<tr>
<td>A</td>
<td>Anlagen- und Objektkatalog</td>
</tr>
<tr>
<td></td>
<td>A1 Anlagen- und Objektkatalog (AOK), Basisversion '50</td>
</tr>
<tr>
<td></td>
<td>A2 Verzeichnis der Anlagearten der SBB (Stand 1.1.90)</td>
</tr>
<tr>
<td></td>
<td>A3 Zuordnung von Objekten zu vier Bereichen</td>
</tr>
<tr>
<td>B</td>
<td>Teilsystemgliederung, Baukosten-Kontenplan</td>
</tr>
<tr>
<td></td>
<td>B1 Baukosten-Kontenplan (BK), Basisversion '90</td>
</tr>
<tr>
<td></td>
<td>B2 Baukosten-Kontenplan '90, Auszug Übergangsobjekt "Allgemeines"</td>
</tr>
<tr>
<td></td>
<td>B3 Baukosten-Kontenplan '90, Auszug Hochbauten</td>
</tr>
<tr>
<td></td>
<td>B4 Baukosten-Kontenplan '90, Auszug Trassebauten</td>
</tr>
<tr>
<td></td>
<td>B5 Baukosten-Kontenplan '90, Auszug Kunstdächer</td>
</tr>
<tr>
<td></td>
<td>B6 Baukosten-Kontenplan '90, Auszug Untertagbauten</td>
</tr>
<tr>
<td></td>
<td>B7 Einordnung des Rahmenkontenplans für den Nationalstrassenbau in den Baukosten-Kontenplan, Basisversion '90</td>
</tr>
<tr>
<td>C</td>
<td>Elementgliederung</td>
</tr>
<tr>
<td></td>
<td>C1 Elementkatalog für den Tiefbau, Basisversion '90</td>
</tr>
<tr>
<td></td>
<td>C2 Beispiele für die Aufteilung in Elemente</td>
</tr>
<tr>
<td></td>
<td>C3 Elementkostengliederung (EKG), Entwurfsversion April 1990</td>
</tr>
<tr>
<td>D</td>
<td>Normpositionen-Katalog</td>
</tr>
<tr>
<td></td>
<td>D1 Kapitelgliederung NPK Bau 2000, Stand Januar 1990</td>
</tr>
<tr>
<td>E</td>
<td>Verknüpfungen zum Baukosten-Kontenplan</td>
</tr>
<tr>
<td></td>
<td>E1 Verknüpfung Baukosten-Kontenplan (Basisversion '90) - EKG</td>
</tr>
<tr>
<td></td>
<td>E2 Verknüpfung Baukosten-Kontenplan (Basisversion '90) - NPK Bau 2000</td>
</tr>
<tr>
<td>F</td>
<td>Anwendungsbekanntebeispiele</td>
</tr>
<tr>
<td></td>
<td>F1 Engadinerstrasse, Umfahrung Strada, Auflageprojekt Mai 1987</td>
</tr>
<tr>
<td></td>
<td>F2 N8 Spiez - Brünig, Chüebalmtunnel</td>
</tr>
<tr>
<td></td>
<td>F3 N3 Basel - Zürich, Überquerung des Aaretales bei Schinznach-Bad</td>
</tr>
<tr>
<td></td>
<td>F4 Kantonsstrasse Wolfenschissien - Oberrickenbach NW, Neuanlage Zelgli - Schüpfen, Baulos Nord</td>
</tr>
<tr>
<td></td>
<td>F5 Gesamtmelioration Otelfingen-Boppelsen, Entwässerung Areal SGG</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>AOK</td>
<td>Anlagen- und Objektkatalog</td>
</tr>
<tr>
<td>ASB</td>
<td>Bundesamt für Strassenbau</td>
</tr>
<tr>
<td>BDS</td>
<td>Baudatensystematik</td>
</tr>
<tr>
<td>BK</td>
<td>Baukosten-Kontenplan</td>
</tr>
<tr>
<td>BKA</td>
<td>Baukostenanalyse</td>
</tr>
<tr>
<td>BKP</td>
<td>Baukostenplan</td>
</tr>
<tr>
<td>BRD/SfB</td>
<td>Klassifikation und Codierung im Bauwesen</td>
</tr>
<tr>
<td>CADD</td>
<td>Computer Aided Design and Drafting</td>
</tr>
<tr>
<td>CRB</td>
<td>Schweizerische Zentralstelle für Baurationalisierung</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsche Industrie-Norm</td>
</tr>
<tr>
<td>EDV</td>
<td>Elektronische Datenverarbeitung</td>
</tr>
<tr>
<td>EKG</td>
<td>Elementkostengliederung</td>
</tr>
<tr>
<td>ETH</td>
<td>Eidgenössische Technische Hochschule</td>
</tr>
<tr>
<td>GKG</td>
<td>Gemeinsame Kostenglieder</td>
</tr>
<tr>
<td>IBETH</td>
<td>Institut für Bauplanung und Baubetrieb der ETH Zürich</td>
</tr>
<tr>
<td>KV</td>
<td>Kostenvoranschlag</td>
</tr>
<tr>
<td>LHO</td>
<td>Leistungs- und Honorarordnung des SIA</td>
</tr>
<tr>
<td>NPK</td>
<td>Normpositionen-Katalog</td>
</tr>
<tr>
<td>SBB</td>
<td>Schweizerische Bundesbahnen</td>
</tr>
<tr>
<td>SBV</td>
<td>Schweizerischer Baumeisterverband</td>
</tr>
<tr>
<td>SIA</td>
<td>Schweizerischer Ingenieur- und Architektenverein</td>
</tr>
<tr>
<td>VSS</td>
<td>Vereinigung Schweizerischer Strassenfachleute</td>
</tr>
<tr>
<td>Bild</td>
<td>Titel</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Entwicklung Arbeitshilfsmittel Kostenplanung und -kontrolle</td>
</tr>
<tr>
<td>2</td>
<td>Projektablauf mit Phasen und Teileistungen</td>
</tr>
<tr>
<td>3</td>
<td>Drei wichtige Projektbeteiligte und ihre Wirtschaftlichkeits- und Finanzierungsrechnung</td>
</tr>
<tr>
<td>4</td>
<td>Grundlegende Strukturelemente eines Projekt:kosteninformationssystems und seiner Umgebung</td>
</tr>
<tr>
<td>5</td>
<td>Konstante Einheitspreise im Anwendungsbereich</td>
</tr>
<tr>
<td>6</td>
<td>Hierarchische Kostengliederung</td>
</tr>
<tr>
<td>7</td>
<td>Beispiel stufenweise Detaillierung</td>
</tr>
<tr>
<td>8</td>
<td>Beispiel für die Verknüpfung zweier Hierarchien der Kostendarstellung</td>
</tr>
<tr>
<td>9</td>
<td>Projektspezifische Summation und Verwendung von Durchschnittswerten</td>
</tr>
<tr>
<td>10</td>
<td>Transfer von Katalog-Leistungseinheiten</td>
</tr>
<tr>
<td>11</td>
<td>Rolle der Mengenberechnung bei der Leistungs- und Kostenermittlung</td>
</tr>
<tr>
<td>12</td>
<td>Im Detaillierungsgrad gestaffelte Kostenberechnung</td>
</tr>
<tr>
<td>13</td>
<td>Beispiel zur im Detaillierungsgrad gestaffelten Kostenermittlung</td>
</tr>
<tr>
<td>14</td>
<td>Hierarchische Begriffe und ihre Uebersetzungen und approximativen Synonyme</td>
</tr>
<tr>
<td>15</td>
<td>Darstellung der Katalog-Leistungseinheiten</td>
</tr>
<tr>
<td>16</td>
<td>Beispiel einfachere Katalog-Leistungseinheit</td>
</tr>
<tr>
<td>17</td>
<td>Arten der Beschreibung der Hauptleistungen</td>
</tr>
<tr>
<td>18</td>
<td>Beispiel kombinierte Katalog-Leistungseinheit (CRB)</td>
</tr>
<tr>
<td>19</td>
<td>Umfahrung Grüssch, Situationsplan</td>
</tr>
<tr>
<td>19</td>
<td>Umfahrung Grüssch, Gliederung in Objekte, mit Abgrenzungen</td>
</tr>
<tr>
<td>20</td>
<td>Varianten für die Einordnung kleiner Objekte</td>
</tr>
<tr>
<td>21</td>
<td>Kostengliederung auf Objektebene</td>
</tr>
<tr>
<td>22</td>
<td>Schema für die Anlagen-Numerierung</td>
</tr>
<tr>
<td>Seite</td>
<td>Thema</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>23</td>
<td>Verteilung der Kostenanteile des Zürcher Indexes für Wohnbaukosten auf die Hauptgruppen</td>
</tr>
<tr>
<td>24</td>
<td>Beispiele für Teilsysteme und Elemente auf zwei Ebenen</td>
</tr>
<tr>
<td>25</td>
<td>Kostengliederung auf Teilsystem-Ebene</td>
</tr>
<tr>
<td>26</td>
<td>Zusammenhang der Gliederungen</td>
</tr>
<tr>
<td>27</td>
<td>Alternativen für Kostenberechnung</td>
</tr>
<tr>
<td>28</td>
<td>Benützung existierender Systeme</td>
</tr>
<tr>
<td>29</td>
<td>Verwendung der Arbeitsmittel</td>
</tr>
<tr>
<td>30</td>
<td>Alternativen für das Ausschreiben</td>
</tr>
<tr>
<td>31</td>
<td>Komplexität Aufbau Katalog-Elemente</td>
</tr>
<tr>
<td>32</td>
<td>Vergleich Positionsauflauf</td>
</tr>
<tr>
<td>33</td>
<td>Varianten für Mengenauszüge</td>
</tr>
<tr>
<td>34</td>
<td>Wichtigste Projektkosten-Information</td>
</tr>
<tr>
<td>35</td>
<td>Übersicht Kostenbeherrschung im Projektablauf</td>
</tr>
<tr>
<td>36</td>
<td>Instrumente Kostenbeherrschung</td>
</tr>
<tr>
<td>37</td>
<td>Etappenweise Steuerung</td>
</tr>
<tr>
<td>38</td>
<td>Kostenkontrolle</td>
</tr>
</tbody>
</table>
ZUSAMMENFASSUNG

Die Ermittlung, Festlegung und Beherrschung der **Leistungen** und **Kosten** von Projekten
- hat einen entscheidenden Einfluss auf ein nutzen-/kostengünstiges Bauen
- macht einen bedeutenden Teil der Leistungen der Ingenieure und Architekten sowie des Bauherrn aus.

Die wichtigsten **Anforderungen** an eine **Kostenbeherrschung** im Projektablauf können wie folgt zusammengefasst werden:
- Kosten jederzeit in jeder Projektphase zutreffend, übersichtlich und zielgerichtet darstellen.
- Durchgängigkeit als Voraussetzung für die Steuerung vom Anfang des Projekts bis zum Ende gewährleisten.
- Bedürfnisse verschiedener Projektbeteiligter sind auf wirtschaftliche Weise zu erfüllen.
- Die verschiedenen Arbeitshilfsmittel sind aufeinander abzustimmen, um eine einfache und fehlerfreie Arbeit zu ermöglichen.
- Kostenüberwachung ist grundsätzlich sowohl mit EDV als auch mit herkömmlichen Mitteln realisierbar.

In diesem Bericht sind nicht nur und nicht vor allem Daten- und kommunikationstechnische Probleme zu lösen. Im Vordergrund stehen vorerst die **semantischen** und **führendstechnischen** Aspekte der Kostenplanung und -kontrolle. Die entsprechenden Lösungen sollen jedoch die effizienten Daten- und kommunikationstechnischen Möglichkeiten nutzen können.

Als wichtigste **Grundlage** für ein gemeinsames System von entsprechenden Arbeitshilfsmitteln werden betrachtet:
- Denken in Systemen als Grundlage für technische Voraussetzungen, Leistungsbeschreibungen und Führungsmethodik
- Gliederung der Projekte in Objekte
- Verwendung des Baukosten-Kontenplans als Rahmen für die Kostendarstellungen und -vergleiche
- Benützung des Konzepts NPK Bau 2000 für Leistungsbeschreibungen mit Positionen, ähnliche Leistungsbeschreibungen auf allen Ebenen
- Beachten der vorhandenen Grundlagen des Projektmanagements, der System- und Kommunikationslehre, der Informatik und der Betriebswirtschaftslehre.

Im Sinne der effizienten Erfahrungsbildung und Bearbeitung werden folgende **Daten** unterschieden
- vollständiger Satz von Projektdaten
- Standard- und Erfahrungsdaten in Form von Katalog-Leistungseinheiten.

Die Standard- und Erfahrungsdaten sind auf die jeweiligen Projekte anzupassen.
Im vorliegenden Bericht werden folgende Ergebnisse vorgestellt:

1. Durchgehendes hierarchisches System für die Leistungsbeschreibungen und die Kostenplanung und -kontrolle über die Ebenen
 - Objekte
 - Teilsysteme
 - Elemente
 - Positionen
 - Einsatzmittel,

das erlaubt, vom Groben zum Detail und zurück zum Groben zu gehen und die gleichen Ueberlegungen, Methoden und Hilfsmittel auf allen Ebenen und somit auch für eine variable Gliederungstiefe anzuwenden. Verwendung weiterer Hierarchien, die mit dem System verknüpft werden können.

2. Dreistelliger Baukosten-Kontenplan für die Darstellung der Kosten beliebiger Objekte aus dem Hoch- und Tiefbau auf drei Ebenen
 - Kostenhauptgruppen
 - Kostengruppen
 - Kostenuntergruppen,

wobei sich die Kostengliederung an Teilsystemen und Elementen orientiert und sich somit direkt für die fachbezogene Kostenplanung und -kontrolle eignet.

3. Auf physischen Teilen basierende Elementmethode, die anschaulich sowie projektierungs- und ausführungstauglich ist, mit
 - Elementen
 - Berechnungselementen, die aus Positionen zusammengesetzt sind,

die auf möglichst einfache und gut definierte Weise mit dem Baukosten-Kontenplan verknüpft sind.

4. Bestätigung des Konzepts NPK Bau 2000 und seiner grossen Bedeutung für die schweizerische Bauwirtschaft mit möglichst einfacher und gut definierter Verknüpfung von
 - Kapiteln
 - bzw. Abschnitten

zum Baukosten-Kontenplan.

5. Konzept für die Kostenbeherrschung
 - über alle Phasen des Projektablaufs
 - für alle Projektbeteiligten im Datenverbund

und entsprechende, mit oder ohne EDV-Unterstützung einsetzbare Methoden und Arbeitshilfsmittel.
RESUME

L'étude, la détermination et le contrôle des prestations et des frais des projets

- sont d'une influence cruciale pour obtenir des constructions économiques et utiles
- sont une partie considérable des prestations des ingénieurs, des architectes, et des maîtres des ouvrages.

Les exigences les plus importantes à la gestion des frais pendant la durée totale d'un projet peuvent être résumées comme suit:

- présentation des frais exactes en tout temps, dans chaque phase du projet, de manière claire et précise
- généralité des méthodes et outils pour que la maîtrise des frais soit garantie du commencement à la fin du projet
- satisfaction économique des besoins des parties différentes du projet
- coordination des outils du travail des ingénieurs et architectes permettant un travail simple et sans fautes
- la surveillance des frais peut être réalisée avec de l'informatique ou des méthodes conventionnelles.

Dans ce rapport, on ne veut pas seulement, et pas avant tout résoudre les problèmes techniques des données et de la communication de données. Les aspects sémantiques et de la gestion des frais sont mis au premier plan. Mais les solutions doivent profiter des possibilités techniques modernes du handling et de la communication des données.

Les composantes les plus importantes suivantes sont considérées comme base d'un système général des outils de travail pour les ingénieurs et architectes:

- réflexion en systèmes pour définir les bases techniques, les prestations et la méthode de gestion
- répartition des projets en objets (ouvrages)
- application du plan comptable des frais de construction comme structure pour présenter et comparer des frais
- utilisation de la conception CAN Construction 2000 pour décrire les prestations avec des articles, et définition des prestations similaires sur les autres niveaux
- prise en compte des éléments fondamentaux du management des projets, de la théorie des systèmes et de la communication, de l'informatique et de l'économie d'entreprise.

La différence conceptuelle suivante entre

- ensemble des données du projet
- les unités de prestation sous catalogue représentant des unités normalisées ou réalisées

permet de travailler et d'acquérir des expériences avec un minimum d'effort. Il y a lieu d'adapter les données de base normalisées et celles de projets courants ou réalisés aux conditions relevantes.
Ce rapport présente les résultats suivants:

1. Un système général pour définir les prestations et pour étudier, optimiser, et contrôler les frais des constructions est établi aux niveau des
 - objets (ouvrages)
 - sous-systèmes
 - éléments
 - articles
 - ressources.

Ce système permet d'aller de l'étude et estimation sommaires à l'étude et estimation détaillées et inversément et d'appliquer les mêmes réflexions, méthodes et outils à tous les niveaux et, en conséquence, d'utiliser une structure avec une profondeur de structuration variable. D'autres hiérarchies peuvent être introduites et liées au système défini ci-dessus.

2. Un plan comptable des frais de construction à trois chiffres pour présenter les frais de construction de tous objets (ouvrages) du bâtiment et du génie civil selon trois subdivisions
 - groupe principal de frais
 - groupe de frais
 - sous-groupe de frais,

dont la structure s'oriente aux sous-systèmes et aux éléments et s'adapte donc directement à la gestion professionnelle des frais.

3. Une méthode par éléments se basant sur des parties physiques de la construction, qui donc se prête aussi bien aux études qu'à l'exécution des travaux et qui consiste en
 - éléments
 - éléments calculés qui se composent d'articles normalisés

liés d'une manière simple et bien définie au plan comptable des frais de construction.

4. Une confirmation de la conception CAN Construction 2000 et de son importance pour l'économie suisse de la construction avec une correspondance aussi simple et claire que possible
 - des chapitres
 - ou des sections

du CAN avec le plan comptable des frais de construction.

5. Une conception pour la gestion des frais des constructions
 - pendant toutes les phases du projet
 - pour toutes les parties intervenant au projet et la communication de données

et des méthodes et outils de travail correspondants qui peuvent être appliqués avec ou sans les moyens de l'informatique.
1. EINLEITUNG

1.1 Auftrag

Ausgangslage

Die Ermittlung, Festlegung und Beherrschung der **Bauleistungen** und der **Baukosten** sind Aufgaben bei der Definition und Abwicklung von Bauvorhaben, die

- einen entscheidenden Einfluss auf ein nutzen-/kostengünstiges Bauen haben
- einen bedeutenden Anteil der Leistungen der Ingenieure und Architekten sowie des Bauherrn ausmachen.

Um Bauvorhaben bearbeiten zu können, müssen sie überschaubare, erarbeitbare und entscheidungsorientierte Teile zergliedert werden.

Mehrere neuere **Entwicklungen** haben dazu geführt, dass die bis heute in der Regel verwendeten Kostenliederungen (z.B. Nationalstrassen-Kontenplan, NPK-Gliederung VSS/SIA) den heutigen und zukünftigen Anforderungen nicht mehr genügen.

b. Der Bau des Nationalstrassennetzes ist zwar noch nicht abgeschlossen, aber bereits heute ist eine Gewichtsverschiebung zugunsten des **Unterhalts** der Nationalstrassen und der **Erneuerung** des Hauptstrassennetzes festzustellen. Dementsprechend werden die Finanzmittel in den nächsten 10 - 20 Jahren eingesetzt werden. In diesen Jahren sollen im Bahnbau sehr bedeutende Mittel investiert werden.

d. Die Fachorganisationen CRB/VSS/SIA sind zur Ueberzeugung gelangt, dass eine genügende **Baurationalisierung** heute gemeinsame Systeme für die Leistungsbeschreibung (NPK) und Kostenzusammenstellungen (BKP/BKA) sowie für die Unternehmerkalkulation für die Gesamtanlagen des Hoch- und Tiefbaus verlangt. Die verschiedenen Hilfsmittel für die Beschreibung der Leistungen und die Planung und Kontrolle der Kosten sind konzeptionell zu überlegen und besser aufeinander abzustimmen. In den achtziger Jahren wurden, unter anderem im Zusammenhang mit diesem Forschungsvorhaben, bedeutende Anstrengungen in dieser Richtung unternommen und sichtbare Ergebnisse erzielt (Bild 1).
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutzen, Funktionen, Umgebung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauwerke, Teilsysteme (BKP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauwerkssteile, Elemente (BKA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungspositionen (NPK)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDV-gestützte Kostenplanung und -kontrolle (AGBPM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bild 1: Entwicklung Arbeitshilfsmittel Kostenplanung und -kontrolle

Allgemeine Ziele

Mit diesem Forschungsauftrag will die VSS

- aktiv an der **Gestaltung** einer gemeinsamen Gliederung der Leistungen und Kosten für Hoch- und Tiefbauten mitwirken

- die **Konsequenzen** eines solchen Systems für die Arbeiten im eigenen Fachgebiet frühzeitig erkennen.

Wie für jedes Sachgebiet sind auch für die Kostenplanung und -kontrolle einfache, klare und tragfähige Grundlagen von zentraler Bedeutung.

Aufgaben

Das Schwergewicht des Forschungsvorhabens soll bei einer **Element- und Arbeitsgattungsgliederung** mit ihrer Verbindung für den Tiefbau liegen.

Die Kostengliederung soll

- eine geordnete und vergleichbare Kostenzuordnung über den ganzen Projektablauf gewährleisten

- für alle Arten von Objekten angewendet werden können

- auf Kostenermittlung und -beurteilung, aber auch auf Kostenbeherrschung ausgerichtet sein, sowohl im Groben als auch im Detail

- auf klare Kosteneinflussgrössen aufgebaut und als Checkliste geeignet sein

- die mit anderen Kostengliederungen gemachten praktischen Erfahrungen berücksichtigen
- einen rationellen EDV-Einsatz gewährleisten, aber auch von Hand verwendbar sein
- betriebswirtschaftliche Ueberlegungen berücksichtigen.

Kostengliederungen sollen zu möglichst klaren und gezielt und effizient verwendbaren Kostenzusammenstellungen für verschiedene Detaillierungsgrade, Projektbeteiligte, Projektphasen (Bild 2) und Objekttarten führen.

<table>
<thead>
<tr>
<th>Phasen und Teilleistungen</th>
<th>LHO 102 Architekt (Gesamtleiter)</th>
<th>LHO 103 Bau-Ling. (Spezialist)</th>
<th>LHO 108 Masch.-Ing., El.-Ing., Fach-Ing.</th>
<th>SN 640 003 Strassen-Fachleute</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Grundlagenermittlung</td>
<td>Problemanalyse</td>
<td>Vorbereitung</td>
<td>Grundlagenbeschaffung Ueberprüfung d. Ziele 1. Festlegung d. Str./typ Variante (Bauh., Verw.)</td>
</tr>
<tr>
<td></td>
<td>Vorstudien</td>
<td>Studium von</td>
<td>Planungsstudie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lösungsmöglichkeiten</td>
<td>Vorstudie</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Vorprojekt</td>
<td>Vorprojekt</td>
<td>Vorprojekt</td>
<td>Vorprojekt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grob-Abt. Baukosten u. Termine</td>
<td>Vorprojekt</td>
<td>Vorprojekt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>w Sw. Untersch. d. Variante</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>def. Festleg. d. Str./typ</td>
</tr>
<tr>
<td>2A</td>
<td>Bauprojekt</td>
<td>Bauprojekt</td>
<td>Bauprojekt</td>
<td>Projektierung</td>
</tr>
<tr>
<td></td>
<td>Schäden der Baukosten</td>
<td>Schäden d. Baukost u. Term.</td>
<td>Schäden der Baukosten u. Termine</td>
<td>Festlegung Normalprofil,</td>
</tr>
<tr>
<td>2B</td>
<td>Baubevollmächtigungsprojekt</td>
<td>Baubevollmächtigungsverfahren</td>
<td>Bebauungsverfahren</td>
<td>Detaillierung Obauver</td>
</tr>
<tr>
<td></td>
<td>Detailstudien</td>
<td>Detailstudien</td>
<td></td>
<td>Kostenvorausschlag</td>
</tr>
<tr>
<td></td>
<td>Kostenvoranschlag</td>
<td>Kostenvoranschlag</td>
<td></td>
<td>Bewertungsverfahren</td>
</tr>
<tr>
<td>3</td>
<td>Prov. Ausführungspläne</td>
<td>Prov. Ausführungspläne</td>
<td>Ausschreibung und</td>
<td>Ausschreibungspläne</td>
</tr>
<tr>
<td></td>
<td>Ausschreibungswerkzeug, Verg./anr.</td>
<td>Ausschreibungswerkzeug, Verg./anr.</td>
<td>Ausschreibung und</td>
<td>Ausschreibungspläne</td>
</tr>
<tr>
<td></td>
<td>Termplan Ausführung</td>
<td>Termplan Ausführung</td>
<td>Ausschreibung und</td>
<td>Ausschreibungspläne</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ausschreibung und</td>
<td>Ausschreibungspläne</td>
</tr>
<tr>
<td>4</td>
<td>Werkvertrag</td>
<td>Werkvertrag</td>
<td>Ausschreibungspläne Oberbauleitung</td>
<td>Ausschreibungspläne Oberbauleitung</td>
</tr>
<tr>
<td></td>
<td>Abnahme</td>
<td>Abnahme</td>
<td>Oberbauleitung</td>
<td>Oberbauleitung</td>
</tr>
<tr>
<td></td>
<td>Schluss-Dokumentation</td>
<td>Schluss-Dokumentation</td>
<td>Schluss-Dokumentation</td>
<td>Schluss-Dokumentation</td>
</tr>
<tr>
<td></td>
<td>Schlussabrechnung</td>
<td>Schlussabrechnung</td>
<td>Schlussabrechnung</td>
<td>Schlussabrechnung</td>
</tr>
</tbody>
</table>

Bild 2: Projektablauf mit Phasen und Teilleistungen

1.2 Grundlagen und Voraussetzungen

Die Grundlagen der Betriebswirtschaftslehre (bzw. Mikroökonomie) sollen möglichst zur Anwendung gelangen. Im wesentlichen wird die Kostenplanung und -kontrolle bezüglich baulichen Anlagen
in drei Wirtschaftsbereichen von wichtigen Projektbeteiligten mit unterschiedlichen Betriebszielen verwendet:

- beim Benützer ist die Wirtschaftlichkeit und Finanzierung der baulichen Anlage im Betriebszustand massgebend

- der Bauherr bzw. die Gesamtprojektleitung führt eine Projektkostenrechnung und zielt eine Anlage an, die im Verhältnis zu den Kosten möglichst viel wert und finanzierbar ist

- der Projektierende bzw. der ausführende Unternehmer führt eine Finanzbuchhaltung und Kostenrechnung, die über den wirtschaftlichen Erfolg und die Finanzierung der Auftragsaktivität Auskunft geben.

Diese Bereiche der Kostenplanung und -kontrolle und der Wirtschaftlichkeits- und Finanzierungsrechnungen sind im Bild 3 dargestellt. Für die im vorliegenden Bericht zu untersuchende kostengliederung ist vor allem der zweite Bereich massgebend (1). Gerade hier ist jedoch das übliche Instrumentarium der betriebswirtschaftlichen Kostenrechnung (mit Kostenarten, Kostenstellen, Kosten träger, Sollkosten, Plankosten, fixen und variablen Kosten, Deckungsbeiträgen etc.) bis heute kaum verwendbar. Dies unter anderem deshalb, weil es sich hier um eine Projektkostenrechnung handelt, während das betriebswirtschaftliche Instrumentarium für laufend produzierende Betriebe (und in der Regel für Massengüter) zugeschnitten ist.

Die Kostengliederung soll auf der Systemtheorie aufgebaut werden. Bei der Planung, Erstellung bzw. Beschaffung und Nutzung baulicher Anlagen lassen sich zahlreiche Systeme identifizieren, z.B.

- die bauliche Anlage selbst
- die Projektorganisation, welche die Anlage plant und erstellt
- die Betriebsorganisation, welche die Anlage nutzt
- die Dokumentation, welche die Anlage darstellt.

Diese Systeme sind dadurch charakterisiert dadurch, dass sie

- ein ziel- bzw. zweckgerichtetes Verhalten aufweisen
- in Teilsysteme und Komponenten aufteilbar sind, die bestimmte Eigenschaften (z.B. organisatorische Zuordnungen, Termine, Qualität, Kosten) aufweisen und über diese miteinander verbunden sind.

In der Realität sind für die Kostengliederung eine ganze Reihe unterschiedlicher Aspekte zu berücksichtigen (Unterteilung der Kosten nach physischen Elementen, örtlichen Bereichen, Finanzierung, Projektbeteiligten, Bearbeitungsstufe etc.). Wollte man alle Kostendaten nach allen Aspekten beliebig erfassen und sortieren können, würde eine n-dimensionale Matrix entstehen, die

- mit einem hohen Erfassungs- und Nachführungsaufwand verbunden wäre
- eine jederzeitige und rasche Kostenbeherrschung nicht gewährleisten könnte.

Als Alternative bieten sich die Modularisierung und hierarchische Ordnung der zu beherrschenden Kostenwerte an. Diese Struktur entspricht wiederum einer übersichtlichen und kontrollierbaren Systemgliederung und Führungsstruktur.

Die Kosten sollen nicht nur erfasst und dargestellt, sondern auch geplant und gesteuert werden. Für die Leitung von Neubau-, Umbau-, Erneuerungs- und Ausbauvorhaben soll die Methodik des Projektmanagements (2) angewandt werden.

- Ein Bauvorhaben ist in diesem Sinne ein Projekt, d.h. eine zeitlich und leistungsmässig abgegrenzte Bauaufgabe. Dabei dient die physische Gliederung der baulichen Anlage als Basis.
- Diese von den Projektbeteiligten erbrachten Leistungen bzw. die dabei verbrauchten Güter stellen wertmässig nichts anderes als die Projektkosten dar.
- Die innerhalb der Projektorganisation wirkenden Beteiligten haben sich im Sinne des Gesamtprojekts ziel- und zweckgerichtet verhalten, wenn die bauliche Anlage am Schluss ein optimales Nutzen-/Kosten-Verhältnis aufweist.
Es darf vorausgesetzt werden, dass für jedes Projekt ein mehr oder weniger formelles Informations- und Kommunikationssystem aufgebaut wird. Im Bild 4 sind grundlegende Strukturelemente eines Projektkosten-Informationssystems und seiner Umgebung dargestellt. Es sind die für die Leistungs-erbringung der Projektbeteiligten erforderlichen Informationen, welche die Anforderungen an das Informationssystem bestimmen.

Bild 4: Grundlegende Strukturelemente eines Projektkosteninformationssystems und seiner Umgebung

Legende zu Bild 4:
- BH: Bauherr
- GPL: Gesamtleiter
- P/P: Planer/Projekttierender
- BL: Bauleiter
- A/L: Ausführender/Lieferant

Datenfluss
Projektlgrenzen
Grenzen der Stammorganisationen

Bei der Definition der Begriffe soll eine möglichst einfache, verkürzte Form gewählt werden. Werden die Begriffe nur im Zusammenhang mit der Kostengliederung im Bauwesen benutzt, so können präzisierende Wortteile entfallen (z.B. Objekt statt Bauobjekt, Menge statt Leistungsmenge, Teilsystem statt Objekt-Teilsystem, Kontenplan '90 statt Baukosten-Kontenplan '90).

1.3 Bestehende Kostengliederungen

Die bestehenden Gliederungen wurden bereits in der Pilotstudie (1) zusammengestellt. Daraus wurde dann in dieser Studie ein Entwurf für einen Standardkostenplan entwickelt, den jedoch das CRB leider ablehnte, weil er nicht dem existierenden BKP entsprach.

Im Hochbau wird der BKP des CRB häufig als Kostengliederung benutzt, teilweise mit branchenspezifischen Anpassungen. In der praktischen Anwendung dominieren bis heute anzahlmässig die Projekte, die im wesentlichen nur ein Objekt umfassen. Bei den Ausschreibungen nach dem NPK des CRB ist jeweils die BKP-Nummer anzugeben, damit die Leistungen eindeutig sind und die Verknüpfung zwischen Kostenanschlag einerseits und Ausschreibung und Abrechnung andererseits sichergestellt werden kann. Seit einigen Jahren wird vom CRB die "Baukostenanalyse" (heute Elementko-
stengliederung, EKG, genannt) als dritte Kostenstengliederung benützt. Sie wurde vor allem für Kosten-
schützung und Kostenvoranschläge sowie für Auswertungen von abgerechneten Bauten entwickelt.
Sie ist mit dem NPK insofern verknüpft, als die Kostenangaben zu den Berechnungselementen auf-
grund der Richtpreise für die Positionen, aus denen die Berechnungselemente zusammengesetzt sind,
berechnet werden.

Zur Horizonteerweiterung und Relativierung von schweizerischen Details lohnt sich auch ein Blick auf
ausländische Kostenstengliederungen (z.B. BRD: DIN 276, Oesterreich, Grossbritannien, USA: List of
Cost Accounts AGC-CSI).

In der Schweiz existieren bereits verschiedene EDV-gestützte Systeme, besonders für die Ausschrei-
bung und Abrechnung und für die Kostenüberwachung, weniger für die Kostenplanung. Diese Sy-
steme müssten grundsätzlich so aufgebaut sein, dass Aenderungen von Kostenstengliederungen möglich
sind.

1.4 Vorgehen

Dieses Forschungsprojekt ist im Rahmen eines grösseren Programms zur Aufarbeitung von Grundla-
gen, Konzepten und Arbeitshilfsmitteln auf dem Gebiet der Ermittlung, Festlegung und Beherr-
schung der Baukosten zu sehen. Der Ablauf und Zusammenhang verschiedener Projekte auf dem
Gebiet der Kostenplanung und -kontrolle ist im Bild 1 dargestellt.

Bei diesem Projekt ging es vor allem darum, die Möglichkeiten der **Elementmethode im Tiefbau** im
Zusammenhang mit der Arbeitsgattungsgliederung abzuklären und entsprechende Vorschläge auszu-
arbeiten und anhand von Anwendungsbispielen aus der Praxis zu überprüfen. Dabei waren die Ge-
meinsame Kostenstengliederung für Hoch- und Tiefbauten, das Konzept NPK Bau 2000 und Erfahrungen
mit der Elementmethode im Hochbau in die Ueberlegungen einzubeziehen.

Vorhanden war die Pilotstudie Bauprojektkosten (1) der VSS-Kommission 11 (heute 275), die in den
Jahren 1983/84 durch das IBETH im Rahmen einer Subkommission realisiert wurde. Vorerst parallel
wurden in der Dissertation von R. Berger (3) die Bestimmungsgrössen der Baukosten und die
Steuerungs möglichkeiten untersucht und in einem **Indikatormodell** für die Kostenplanung und -beur-
teilung dargestellt.

Im Rahmen dieses Forschungsprojekts wurde folgende Etappierung gewählt:

a. Für die Gemeinsame Kostenstengliederung für Hoch- und Tiefbauten, die von der CRB/
VSS-Koordinationsgruppe unter Einbezug des SIA und des SBV bearbeitet wurde, waren
verschiedene **Einzeluntersuchungen** und **Praxistests** durchzuführen. Die Element- und
Arbeitsgattungsgliederung sollten in einen solchen Kontenplan eingearbeitet werden.

Haustechnik) (5), das ebenfalls von der CRB/VSS-Koordinationsgruppe unter Einbezug
des SIA (NPK Untertagbau) und des SBV sowie weiterer Unternehmeverbände bearbei-
tet wurde, war ein Vorschlag für die **Kapitelgliederung** des NPK Bau 2000 auszuarbeiten.

c. Die Tauglichkeit der **Elementmethode** für Tiefbauten war als wichtigste Fragestellung
dieses Forschungsprojekts zu prüfen. Zudem war ein erster Vorschlag für die Gliederung
eines Standard-Elementkatalogs auszuarbeiten. Dabei waren die BKA und die Berech-
nungselemente des CRB und bereits existierende Ansätze für Bauwerkteil im Tiefbau zu
beachten und praktische Beispiele aus den Gebieten "Trassebauten", "Kunstbauten" und
"Untertagbauten" zu analysieren.
d. Mit Blick auf die praktische, systematische Anwendung der Kostengliederungen im Projektablauf war schliesslich eine klare Vorstellung eines allgemeinen Kostenbeherrschungssystems aufzuarbeiten. Dabei waren die Leistungs- und Honorarordnungen des SIA sowie in- und ausländische Literatur zu beachten.

Das Kostenbeherrschungssystem war dann auch wichtig für die Vorschläge der Arbeitsgruppe "Informatikanwendungen" des SIA. Diese befasste sich insbesondere mit den Schnittstellen im Informationsfluss der Kostendaten zwischen den Projektbeteiligten und speziell mit den dort zu übertragenden Kostendaten. Sie erarbeitete die SIA-Dokumentation 510 "Bauprojektkosten mit EDV" (6).

1.5 Anwendungsbeispiele

Die Anwendungsbeispiele wurden aus verschiedenen Objektarten und in verschiedenen Projektphasen gewählt.

Trassebauten wurden aus den Umfahrungen von Grüsch und Strada gewählt.
- Die Umfahrung von Grüsch im unteren Prättigau ist bereits gebaut, und die Kosten konnten den Verträgen entnommen werden.
- Für die Umfahrung von Strada liegen ein Vorlageprojekt mit einem Kostenvoranschlag und eine Variante dazu vor.

Als Beispiel für Untertagbauten wurde der Chüebalm-Tunnel auf der N8-Teilstrecke Interlaken-Brienzwiler gewählt.

Aus dem Bereich der kulturtechnischen Bauarbeiten wurde die Erneuerung und Verbesserung der Entwässerung einer Flachland-Liegenschaft in Otelfingen untersucht.

Im Teil II dieses Berichtes werden folgende Anwendungsbeispiele vorgestellt:
- Als durchgehendes Beispiel: die Umfahrung von Strada (Engadinerstrasse)
- Für Elementgliederungen anderer Objektarten:
 - Chüebalm-Tunnel (N8 Interlaken - Brienzwiler)
 - Aarebrücke Schinzach-Bad (N3 Basel - Zürich)
 - Kantonsstrasse Wolfenschiessen - Oberrickenbach
 - Gesamtmelioration Otelfingen - Boppelsen.

Die Erfahrungen mit den Praxistests sind im Abschnitt 7.2 zusammengefasst.

1.6 Hoch- und Tiefbau

Bei der mehrjährigen Bearbeitung des Fachgebietes "Kostenplanung und -kontrolle für Bauprojekte" in verschiedenem Zusammenhang hat sich immer wieder gezeigt, dass die Prinzipien, Methoden und
Hilfsmittel für die Leistungsbeschreibung, Kostenermittlung, Kostenplanung und Kostenbeherrschung sowohl für Hochbauten wie für Tiefbauten verwendet werden können. Diese übergeordnete Sicht führt zu Vereinfachungen und Rationalisierungen (Vermeiden unnötiger Doppelspurigkeiten, Benützen wettbewerbsfähiger EDV-Lösungen, Erfahrungsaustausch, Schulung) und ist auch deshalb von Vorteil, weil immer mehr Bauten mit Hoch- und Tiefbauteilen vorkommen (Strassen- und Bahnanlagen in urbanem Gebiet, anspruchsvolle Gebäudetragkonstruktionen und -fundationen, Kläranlagen usw.).

Die Anwendungsbeispiele in diesem Bericht wurden ausschliesslich aus dem Tiefbau ausgewählt, weil im Hochbau bereits Publikationen des CRB bestehen und weil die hier vorgestellten Prinzipien, Methoden und Hilfsmittel im Hochbau teilweise bereits in entsprechende Arbeitshilfsmittel für Architekten und Ingenieure umgesetzt sind.

1.7 Hinweise zum Lesen des Berichts

In der Einleitung (Kapitel 1) sind die allgemeinen Informationen und Voraussetzungen zur Zielsetzung und Einordnung des Forschungsprojekts enthalten.

Wer sich zuerst für die Anwendung der Kostengliederungen im Projektablauf interessiert, kann anschliessend das Kapitel 7 lesen. In diesem Kapitel wird insbesondere gezeigt, wer welche Kostenzusammenstellungen wann und zu welchem Zweck verwendet.

Im Kapitel 2 wird ein Gesamtkonzept vorgestellt, das sich über alle Ebenen und Detaillierungsgrade der Leistungsbeschreibung und Kostenermittlung von den Kosten pro Objekt bis zu den Kosten pro Einsatzmitteleinheit (Lohn- bzw. Maschinenstunde, Material etc.) erstreckt.

Anschliessend werden in den Kapiteln 3 - 6 die vier hier hauptsächlich zu behandelnden Bereiche

- Gliederung von Projekten in Objekte
- Baustellen-Kostenplan
- Elementgliederung
- Konzept NPK Bau 2000

behandelt.

Schliesslich wird, wie erwähnt, im Kapitel 7 die Anwendung der Kostengliederungen im Projektablauf vorgestellt.

Im Teil II des Berichts werden zunächst die detaillierten Gliederungsvorschläge dargestellt. Dann werden die Anwendungsbeispiele in gleichartiger Darstellung gezeigt.
2. GESAMTKONZEPT

2.1 Anforderungen

Gesucht ist eine Kostengliederung für alle Arten von Hoch- und Tiefbauten in der Schweiz (Neubau, Erhaltung, Erweiterung, Umbau), welche die in Kapitel 1 dieses Berichts genannten Anforderungen erfüllt.

2.2 Gesetzmäßigkeiten

Das in den nachfolgenden Kapiteln beschriebene Gesamtkonzept ist auf einigen einfachen Gesetzmäßigkeiten aufgebaut:

a. Was zu den Baukosten gehört, wird wie in der Betriebswirtschaftslehre durch den Betriebszweck (hier den Projektzweck) bestimmt. Der Projektzweck ist die Erstellung einer bestimmten optimalen baulichen Anlage bzw. eines optimal gestalteten Gebiets mit vorwiegend natürlichen Komponenten. Die Baukosten sind die Kosten der Leistungen, die dazu nötig sind.

d. Für die Kostengliederung kann angenommen werden, dass die Leistungen (Produkte) wiederholbar und aufteilbar sind. Die Kosten einer einzelnen Leistung sind abhängig von der Leistungsmenge und dem Preis pro Mengeneinheit (Einheitspreis):

\[
 K = \text{Kosten der Leistung} = \text{Leistungsmenge} \cdot \frac{\text{Preis}}{\text{Mengeneinheit}} = M \cdot P
\]

Allerdings gelten konstante Einheitspreise nur in einem beschränkten Anwendungsbereich (Bild 5). Bereichsweise konstanten Einheitspreisen entsprechen stückweise lineare Kosten.

e. Geht man vom Groben zum Detail, wird stets primär die Menge aufgeteilt, nicht der Preis. Der Preis wird für die detaillierteste verwendete Mengeneinheit angegeben. Die weniger detailliert ermittelten Kostengrößen (z.B. \(K_{ij} \)) werden durch eine Summe von Kosten detaillierter Leistungen ersetzt, z.B. (Bild 6)

\[
 K_{ij} \rightarrow \sum_{k} (M_{ijk} \cdot P_{ijk})
\]
Zu Vergleichszwecken können aus den Summen mittels Division die revidierten Einheitspreise auf der oberen Ebene berechnet und mit den vorher benützten Werten verglichen werden (Erfahrungsbildung).

\[P_{ij} \rightarrow K_{ij}/M_{ij} = \sum_k (M_{ijk} \cdot P_{ijk}) / M_{ij} \]

Der Besteller kann die Leistungsart und -menge wählen, der Preis bildet sich in der Regel auf dem Markt.

Eine Berechnung der Kosten über eine Standard-Prozentaufteilung, z.B.

\[K_{ijk} = \pi_{ijk} \cdot K_{ij} \]

2.3 Konzept der Baukostengliederung

Nachführungen in hierarchischen Kostengliederungen sind prinzipiell bis zur niedrigsten benützten Ebene durchzuführen. Dann können die oberen (kondensierten) Ebenen durch Summation berechnet werden. Wird eine Kostenzahl auf einer oberen Ebene geändert, so ist die Aufteilung der Aenderung für die unteren Ebenen anzugeben.

OBJEKT B. TRASSE

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Objekt mit Nebenleistungen</th>
<th>ME</th>
<th>Menge</th>
<th>Einheitspreis (Fr.)</th>
<th>Betrag (Fr.)</th>
<th>Objekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Grundstück</td>
<td></td>
<td></td>
<td></td>
<td>300'000.-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bauvorbereitung</td>
<td></td>
<td></td>
<td></td>
<td>40'000.-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Objekt Trasse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>. exkl. 0, 1, 7, 8, 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Umgebung</td>
<td>m²</td>
<td>620</td>
<td>25'000</td>
<td>2'360'000.-</td>
<td>2'360'000.-</td>
</tr>
<tr>
<td>9</td>
<td>Honorare</td>
<td>%</td>
<td>12.5</td>
<td>7</td>
<td>310'000.-</td>
<td>310'000.-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. TRASSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3'080'000.-</td>
<td></td>
</tr>
</tbody>
</table>

a) Beispiel Kostengrobschätzung auf Ebene Objekt (mit Nebenleistungen)

OBJEKT B. TRASSE

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Teilsystem</th>
<th>ME</th>
<th>Menge</th>
<th>Einheitspreis (Fr.)</th>
<th>Betrag (Fr.)</th>
<th>Objekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Grundstück</td>
<td></td>
<td></td>
<td></td>
<td>300'000.-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bauvorbereitung</td>
<td></td>
<td></td>
<td></td>
<td>40'000.-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Erdbau, Unterbau</td>
<td>m³</td>
<td>620</td>
<td>16'500</td>
<td>990'000.-</td>
<td>990'000.-</td>
</tr>
<tr>
<td></td>
<td>. (ohne kleine Kunstbauten)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>. kleine Kunstbauten</td>
<td>m³</td>
<td>450</td>
<td>475</td>
<td>210'000.-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rohbau, Oberbau</td>
<td>m²</td>
<td>16'500</td>
<td>60</td>
<td>990'000.-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Installationen, Transportanlagen</td>
<td>m²</td>
<td>5'500</td>
<td>23.50</td>
<td>130'000.-</td>
<td>130'000.-</td>
</tr>
<tr>
<td></td>
<td>. (Kanalisation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ausbau</td>
<td>m²</td>
<td>1'850</td>
<td>42.50</td>
<td>70'000.-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Umgebung</td>
<td>m²</td>
<td>25'000</td>
<td>2.80</td>
<td>70'000.-</td>
<td>70'000.-</td>
</tr>
<tr>
<td>9</td>
<td>Honorare</td>
<td>%</td>
<td>12.5</td>
<td>7</td>
<td>310'000.-</td>
<td>310'000.-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. TRASSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3'110'000.-</td>
<td></td>
</tr>
</tbody>
</table>

b) Beispiel Kostenschätzung auf Ebene Teilsysteme

TEILSYSTEM 35 OBERBAU

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element</th>
<th>ME</th>
<th>Menge</th>
<th>Einheitspreis (Fr.)</th>
<th>Betrag (Fr.)</th>
<th>Teilsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Oberbau</td>
<td>m³</td>
<td>11'000</td>
<td>34.00</td>
<td>375'000.-</td>
<td>975'000.-</td>
</tr>
<tr>
<td></td>
<td>351 Uebergangs- und Fundationsschicht (ohne Reinplanung)</td>
<td>m³</td>
<td>16'500</td>
<td>4.50</td>
<td>75'000.-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>352 Entwässerung Oberbau</td>
<td>m²</td>
<td>1'400</td>
<td>107.00</td>
<td>150'000.-</td>
<td>150'000.-</td>
</tr>
<tr>
<td></td>
<td>354 Belagsabschlüsse</td>
<td>m²</td>
<td>1'000</td>
<td>75.00</td>
<td>75'000.-</td>
<td>75'000.-</td>
</tr>
<tr>
<td></td>
<td>355 Beleg</td>
<td>m²</td>
<td>16'500</td>
<td>18.00</td>
<td>300'000.-</td>
<td>300'000.-</td>
</tr>
<tr>
<td>35</td>
<td>Oberbau</td>
<td>m²</td>
<td>16'500</td>
<td>34.00</td>
<td>975'000.-</td>
<td>975'000.-</td>
</tr>
</tbody>
</table>

35 Oberbau: Fr. 975'000.- = Fr. 59,10 / m²

C) Beispiel Kostenberechnung auf Ebene Elemente

Bild 7: Beispiel stufenweise Detailierung

<table>
<thead>
<tr>
<th>physische Gliederung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Projekt - Leistung</td>
</tr>
<tr>
<td>Kosten</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Projekt</td>
</tr>
<tr>
<td>Kap a</td>
</tr>
<tr>
<td>El 1</td>
</tr>
<tr>
<td>El 2</td>
</tr>
<tr>
<td>Kap b</td>
</tr>
<tr>
<td>El 4</td>
</tr>
<tr>
<td>El 5</td>
</tr>
<tr>
<td>El 6</td>
</tr>
<tr>
<td>Kap c</td>
</tr>
<tr>
<td>El 7</td>
</tr>
<tr>
<td>Vertrag III</td>
</tr>
<tr>
<td>Kap d</td>
</tr>
<tr>
<td>El 7</td>
</tr>
<tr>
<td>Kap e</td>
</tr>
<tr>
<td>El 8</td>
</tr>
</tbody>
</table>

Bild 8: Beispiel für die Verknüpfung zweier Hierarchien der Kostendarstellung

Um transparente und in ähnlicher Form wiederverwendbare Strukturen zu entwickeln, sollen **Kriterien** für die Baukostengliederung ermittelt werden. Dabei soll, mindestens für die betreffende Gliederungsebene, ein Hauptkriterium herausgearbeitet werden. Weitere Kriterien können sekundär in der primären Gliederungsstruktur (kein einheitliches, sondern nur ein dominierendes Kriterium pro Ebene) oder als sekundäre Hierarchien bzw. Vektoren berücksichtigt werden.

Folgende Gliederungskriterien stehen im Groben und im Detail im Vordergrund:

- **physische Gliederung**
 (die bauliche Anlage wird in Objekte, Teilsysteme und Elemente zerlegt)

- **örtliche Gliederung**
 (diese Lokalisierung soll die Ermittlung, Festlegung und Ueberwachung der Kosten erleichtern)

- **Leistungsarten-Gliederung**
 (gleichartige Leistungen werden zusammengefasst, insbesondere solche, die durch eine bestimmte Art Berufsleute ausgeführt werden)

- **Bauwerkfunktionen-Gliederung**
 (tragende, wärmeflussdämmende, abschrankende, bauwerküberwachende etc. Teilsysteme bzw. Komponenten werden unterschieden)

- **Nutzungsfunktionen-Gliederung**
 (die Kosten werden nach Kostenträgern im Betriebszustand, also nach Einheiten, die auch einen Nutzen bringen, aufgeteilt)

- **terminische Gliederung**
 (Unterteilung nach Projektierungs- und/oder Beschaffungs- und Erstellungseinheiten und nach den Vorgängen des Projektablaufs)

- **finanzielle Gliederung**
 (es kommt darauf an, wer die betreffenden Kosten bezahlt bzw. subventioniert)

- **organisatorische Gliederung**
 (als Kriterium zählt, welcher Projektbeteiligte für die Ermittlung bzw. Ueberwachung der betreffenden Kosten zuständig ist)

- **rechtliche Gliederung**
 (es ist z.B. wichtig, wer für die Bewilligung des betreffenden Teils zuständig ist)

- **Wartungs-Gliederung**
 (Systemteile, die eine gleichartige und/oder gleichzeitige Ueberwachung und Wartung aufweisen, werden zusammengefasst)

- **Instandsetzungs-Gliederung**
 (Systemteile, die eine gleiche Nutzungs- bzw. Abschreibungsdauer haben und später zur selben Zeit ersetzt werden sollen, werden als Gattung gewählt).

Eine Aufteilung aller Kosten nach vielen Kriterien wäre aufwendig in der Kostenermittlung, -nachführung und -kontrolle.

Wenn man die Kriterien jedoch etwas genauer analysiert, ergibt sich aus nachstehenden Gründen die **physische Gliederung** als dominierendes Kriterium für die Standard-Gliederung:

Die Leistungsarten-Gliederung ist praktisch ausschließlich auf die Bearbeitung physisch definierbarer Anlageteile zurückführbar (z.B. Elektriker bearbeitet Elektro-Versorgungssystem, Maler erstellt Beschichtungen mit einer gewissen Lebensdauer). Ebenso beziehen sich die Teilbausammeln für die Honorarberechnung auf physische Teilsysteme, die zu gestalten und zu berechnen sind.

Ahnliches gilt für die Bauwerkfunktionen-Gliederung, weil es die Teilsysteme oder Komponenten sind, die spezifische Funktionen haben.

Die Nutzungsfunktionen können praktisch nur über die entsprechende physische/ bauliche Lösung mit Kosten verbunden werden. Die meisten Bauwerkteile haben mehrere Nutzungsfunktionen (z.B. tragen, Raum bilden, isolieren), denen die Kosten nicht einfach zugeordnet werden können.

Auch die Wartung und Instandsetzung wird mit Vor polling auf definierte physische Teile bezogen (z.B. Anlagekomponenten-Numerierung).

Dieses Konzept entspricht dem Denken in physischen Systemen als Basis des Projekt- und Anlagenmanagements (2). Es entspricht auch der heutigen Tendenz zur objektorientierten Programmierung auf dem Gebiet der Informatik.

Ein weiterer klarer Vorteil der physischen Gliederung ist, dass sie sich grundsätzlich zur Verknüpfung mit CAD und Leistungsbeschreibungen eignet. Allerdings müsste eine CAD-Software dabei in der Lage sein, Elemente zu definieren (mit Dimensionen, Qualitäten, Mengen als Attribute), nicht nur einfach grafische Elemente (Striche, Zeichen etc.).

Aus diesen Gründen werden die folgenden Ebenen als primäre hierarchische Standard-Grobgliederung für die Bauprojektkosten vorgeschlagen (Bild 9):

a) Aufteilung des Projekts (auch Bauvorhaben oder Gesamtprojekt genannt) in Objekte (auch Bauobjekte, Bauwerke genannt) als physische Projektierungs-, Erstellungs- und Nutzungseinheiten. Die Objekttarten können in einem Anlagen- und Objektartenkatalog dargestellt werden, was verschiedene Anlagenbesitzer bereits realisiert haben.

b) Aufteilung der Objekte in Teilsysteme (auch Gruppen, Untergruppen, Gattungen, Kapitelgruppen, Kapitel, Gewerke genannt), was auch die Bauwerkfunktions-Gliederung abdeckt. Die BKP-Untergruppen, die "Arbeitsgattungen" und die NPK-Kapitel sind meistens Teilsystemarten.
c) Aufteilung der Teilsysteme in Elemente (auch Bauwerkteile, Berechnungselemente genannt), die auch bei der Projektierung (CADD), Berechnung, Herstellung, Überwachung und Instandhaltung unterschieden werden können. Die Berechnungselemente und z.T. die EKG des CRB sind eine Elementarten-Gliederung.

Es ist zu beachten, dass sowohl die Gliederung auf der Projektseite wie auch diejenige auf der Katalog-Seite zu such- und summationsführenden Zwecken gebraucht werden können. Allerdings ist die Summation vor allem auf der Projektseite zwingend. Auf der Katalog-Seite wird damit aber doch die Möglichkeit geschaffen, Katalog-Leistungseinheiten (z.B. Berechnungselemente) aus
nachgeordneten Katalog-Leistungseinheiten (z.B. Positionen) standardmäßig zusammenzusetzen, wobei diese Zusammensetzung selbst eine wichtige Information ist.

Wenn eine Katalog-Leistungseinheit in die Projekt-Gliederung transferiert wird (Bild 10), können folgende Fälle unterschieden werden:

- Die Katalog-Leistungseinheit wird zunächst angepasst an die projektspezifischen Verhältnisse und wird damit zur Projekt-Leistungseinheit (z.B. Projekt-Elementeinheit oder normpositionsähnliche Reserveposition).

- Die Katalog-Leistungseinheit wird ersetzt bzw. dazugefügt. Dann ist die Leistungseinheit völlig neu zu definieren, und die übergeordneten Ebenen ändern sich entsprechend (z.B. beim Einfügen einer Reserveposition).

Die Numerierung und Bezeichnung der Projekt-Leistungen wird zweckmässigerweise aus der Katalog-Identifikation und projektspezifischen Anpassungen und Ergänzungen bestehen, z.B. wird aus der Objektart "Brücke, aus Spannbeton, Spannweite 30-40 m, Preis pro m2 Fr. 2'000.-, Preise 1986" die "Engitobel-Brücke, aus Spannbeton, Spannweite 38 m, 1'900 m2 zu Fr. 2'100.- = Fr. 4.0 Mio., Preise 1988".

Ein entscheidender Unterschied ist also, dass bei der Projekt-Leistung die Leistungsmenge, im Beispiel 1900 m2, angegeben ist. Weiter werden die Masse, Produkte und Preise dem Projekt entsprechend spezifiziert. Auch im "Bauhandbuch" des CRB wird betont, dass Richtpreise (allgemein berechnete Preise von Standard-Leistungseinheiten) nur zur groben Abschätzung der Kostenrelationen
dienen, nie aber eine objektbezogene Kalkulation ersetzen können. Die Tendenz, den Leistungs-
beschrieb der Standard-Leistungseinheiten unverändert zu übernehmen, nimmt in der Regel mit dem
Detaillierungsgrad zu und mit dem Bearbeitungsgrad ab. Katalog-Objekte und -Teilsysteme kommen
seltener zum Zug, während Normpositionen und Standard-Kalkulationen häufiger verwendet werden.
Je mehr ein Projekt bearbeitet ist, desto eher werden projektspezifische Leistungseinheiten verwenden.
Am wichtigsten ist jedoch der baufachliche Entscheid, wie hoch der Standardisierungsgrad der
baulichen Anlage sein sollte (Aesthetik, Kosten, Unterhalt etc.).

Der Umfang der einzelnen Projekt-Leistungen auf den verschiedenen Ebenen wird bei jedem Projekt
individuell im Zusammenhang mit der Mengenberechnung (auch Massen-Auszug oder Erstellung des
Mengengerüsts genannt) bestimmt. Die Rolle der Mengenberechnung bei der Leistungs- und Kostenermittlung ist im Bild 11 dargestellt.

![Diagramm von Bild 11: Rolle der Mengenberechnung bei der Leistungs- und Kostenermittlung](image)

Bei der Mengenberechnung können gleiche bzw. praktisch gleiche Leistungen zusammengefasst werden, solange sie zur gleichen übergeordneten Projekt-Leistung gehören. Also können z.B.

- die gleichen Stützen S1 - S8 zu einem Projekt-Element zusammengefasst werden, wenn sie zum gleichen Projekt-Teilsystem "Rohbau" gehören
- die Montage der gleichen Fenster F6 - F9 zu einer Projekt-Position zusammengefasst werden, wenn sie zum gleichen Projekt-Element "Fenster" gehören.

Datenverarbeitungstechnisch und für die Nachführung wichtig ist, dass Mengen und Kosten **nicht redundant** eingegeben werden. Berechnete Größen sind also stets nur über eine neue Berechnung aufgrund der aktuellen Ausgangsdaten änderbar. Verknüpfungen zwischen abgelegten bzw. gespeicherten Mengen und Kosten müssen erkannt werden, damit bei Änderungen alle davon betroffenen Dokumente geändert werden. In diesem Bericht werden die groben Elemente der Leistungs- und Kostendaten für Projekte im Bauwesen und ihre Verknüpfungen als baufachliche Grundlage für ein detailliertes Datenmodell (siehe auch 6) behandelt.

Bild 12: Im Detaillierungsgrad gestaffelte Kostenberechnung

Bei der **Kostenermittlung** wird man den Weg vom Groben ins Detail und zurück suchen. Im **Bild 6** kommt man desto mehr ins Detail, je tiefere Ebenen der Hierarchie man benützt. Es wäre jedoch ungeschickt, einfach Ebene für Ebene zu berechnen. Vielmehr soll eine im Detaillierungsgrad **gestaffelte** Kostenberechnung (**Bild 12**) verwendet werden. Dabei werden möglichst jene Projekt-Leistungen weiter untersucht und aufgeteilt, die noch das **höchste Kostenrisiko** aufweisen. Dementsprechend sollen z.B. auch die Konten in einem Kontenplan nicht einen fixierten Detaillierungsgrad für alle Fälle darstellen, sondern einen Rahmen für die Darstellung der Kosten. Im **Bild 13** ist ein Beispiel für eine solche gestaffelte Kostenrechnung dargestellt. Soviel zur Kostenermittlung entlang der primären hierarchischen Projekt-Gliederung.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>ME</th>
<th>Menge</th>
<th>Einheitspreis (Fr.)</th>
<th>Betrag (Fr.)</th>
<th>Hauptgruppe</th>
<th>Objekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>OBBJEKT ALLGEMEINES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>0</td>
<td>Grundstücke</td>
<td></td>
<td></td>
<td></td>
<td>300'000.-</td>
<td></td>
<td>720'000.-</td>
</tr>
<tr>
<td>1</td>
<td>Bauvorbereitung</td>
<td></td>
<td></td>
<td></td>
<td>40'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Umgebung</td>
<td></td>
<td></td>
<td></td>
<td>70'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Honorare</td>
<td></td>
<td></td>
<td></td>
<td>310'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>OBBJEKT ALLGEMEINES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>B</td>
<td>OBBJEKT HAUPTSTRASSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Erdbau, Unterbau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Erd- und Unterbau (ohne kl. Kunstbauten)</td>
<td>m3</td>
<td>51'000</td>
<td>16.-</td>
<td>815'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>Kleine Kunstbauten</td>
<td>m3</td>
<td>450</td>
<td>475.-</td>
<td>210'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Erdbau, Unterbau (1'025'000.-/51'000m3=20.10/m3)</td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>TOTAL 1'025'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rohbau, Oberbau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Oberbau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>Uebergangs- und Fundationsschicht (ohne Reinplanie)</td>
<td>m3</td>
<td>9'400</td>
<td>34.-</td>
<td>316'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>Entwässerung Oberbau</td>
<td>m2</td>
<td>13'000</td>
<td>4.50</td>
<td>60'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>354</td>
<td>Belagsabschluesse</td>
<td>m2</td>
<td>13'000</td>
<td>18.-</td>
<td>234'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>Belag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rohbau, Oberbau (790'000.-/13'000m2=60.80/m2)</td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>TOTAL 790'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Installationen, Transportnl.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Entwässerungs-, Transport- und grosse Werkleitungen</td>
<td>m2</td>
<td>5'500</td>
<td>23.50</td>
<td>130'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Installationen, Transportnl.</td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>TOTAL 130'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ausbau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Ausbau Tiefbauten</td>
<td>m2</td>
<td>1'300</td>
<td>42.50</td>
<td>55'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ausbau</td>
<td></td>
<td></td>
<td></td>
<td>TOTAL 55'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>OBBJEKT HAUPTSTRASSE (2'000'000.-/620m=3226.-/m)</td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>TOTAL 2'000'000.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>OBBJEKT NEBENSTRASSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3'100'000.-/620m=5000.-/m)</td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>TOTAL 3'100'000.-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bild 13: Beispiel zur im Detaillierungsgrad gestaffelten Kostenermittlung

<table>
<thead>
<tr>
<th>deutsch</th>
<th>français</th>
<th>english</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkehrsmittel, Teil der Wirtschaft</td>
<td>réseau de trafic, secteur de l'économie</td>
<td>traffic network, sector of economy</td>
</tr>
<tr>
<td>Strasse, Route, Linie, Strecke</td>
<td>route, itinéraire, ligne, tronçon</td>
<td>road, line</td>
</tr>
<tr>
<td>PROJEKT, Bauvorhaben, Abschnitt (bauliche Anlage)</td>
<td>projet, projet de construction, section (aménagement)</td>
<td>project, construction project, section (constructed facility)</td>
</tr>
<tr>
<td>Objektgruppe, Teilprojekt</td>
<td>groupe d'objets, sous-projet</td>
<td>object group, sub-project</td>
</tr>
<tr>
<td>OBJEKT, Bauwerk, Bauobjekt</td>
<td>objet, ouvrage, construction</td>
<td>construction object, building, structure</td>
</tr>
<tr>
<td>Teilobjekt, Bauwerksbereich</td>
<td>sous-objet, secteur de l'ouvrage</td>
<td>sub-object, sector of facility</td>
</tr>
<tr>
<td>TEILSYSTEM, "Arbeitsgattung", Elementgruppe</td>
<td>sous-système, catégorie de travaux, groupe d'éléments</td>
<td>subsystem, "trade", element group</td>
</tr>
<tr>
<td>ELEMENT, Berechnungselement, Komponente</td>
<td>élément, unité technique, composante</td>
<td>element, construction element, component</td>
</tr>
<tr>
<td>POSITION, Leistungsposition</td>
<td>article</td>
<td>item, line item, work item</td>
</tr>
<tr>
<td>EINSATZMITTEL</td>
<td>ressources - personnel - matériaux - inventaire - prestations de tiers</td>
<td>resources - staff - material - inventory - subcontracts</td>
</tr>
</tbody>
</table>

Bild 14: Hierarchische Begriffe und ihre Ubersetzungen und approximativen Synonyme

Zu beachten ist schliesslich, dass jede der vorstehend beschriebenen Ebenen a) - e) in mehrere Zwischenebenen unterteilt werden kann, z.B.:

a) Objektgruppen, Objekte, Teilobjekte
b) Teilsystemgruppen, Teilsysteme, Komponentengruppen
c) Elementgruppen, Elemente, Berechnungselemente
d) Unterabschnitt, Hauptpositionen, Unterpositionen
e) Einsatzmittelgruppen, Einsatzmittel, Einsatzmittelteile
In den folgenden Kapiteln dieses Berichts werden nun die einzelnen Ebenen (exkl. Ebene e, die hier nicht weiter zu untersuchen ist) mehr im Detail besprochen. Die Standard-Gliederungen und die Beispiele dazu sind im Teil II des Berichts dargestellt.

2.4 Entwicklung und Darstellung von Katalog-Leistungseinheiten

Katalog-Leistungseinheiten kommen entsprechend dem soeben vorgestellten Konzept auf allen Ebenen der Kostengliederung vor. Ein grosser Teil davon existiert bereits in Form von Datenbanken, Katalogen und firmeneigenen Erfahrungswerten und Beispielen:

- Die Ebene der Teilsysteme ist einerseits in ähnlicher Form wie diejenige der Objekte vorhanden, indem dort z.B. angegeben ist, welche Heizungsanlagen inbegriffen sind und wieviel sie insgesamt bzw. pro m³ kosten, oder welcher Straßenbelag enthalten ist und wieviel er insgesamt bzw. pro m² kostet (kombinierte Standard-Leistungseinheiten, siehe Bild 13). Andererseits können Kennwerte zur Bestimmung von Teilsystemkosten benützt werden (z.B. Fr./t Stahlbaukonstruktion oder Fr./m³ Stahlbeton).

- Auf der Ebene der Elemente erarbeitet das CRB in den "Baukostenarten" eine sehr nützliche, laufend wachsende Sammlung von Berechnungselementen, die aus Positionen des NPK zusammengesetzt und kostenmässig berechnet werden.

Die wichtigsten Bestandteile einer Katalog-Leistungseinheit sind im Bild 15 angegeben, ein einfaches Beispiel ist im Bild 16 dargestellt.

Allgemein können verschiedene Stufen von Angaben unterschieden werden, z.B.

- maximal mögliche Angaben
 (z.B. max. Inhalt des Datenfeldes, der gespeichert und weiterverarbeitet werden kann; ist evtl. flexibel)
- minimal nötige Angaben
 (z.B. min. Inhalt des Datenfeldes zur Übertragung zwischen Projektbeteiligten; im Bild 15 sind dies I und P).

Bild 15: Darstellung der Katalog-Leistungseinheiten

<table>
<thead>
<tr>
<th>Mengeneinheit</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>evtl. angenommene Menge (Teilgrößen)</td>
<td>P</td>
</tr>
<tr>
<td>Einheitspreis</td>
<td>Preis der Katalog-Leistungseinheit</td>
</tr>
</tbody>
</table>

Bild 16: Beispiel einfache Katalog-Leistungseinheit

102 Baugrubenaushub

- Transport, Deponie Unternehmer t = 250 cm
- Mit Auflad und Abtransport zur Deponie
- Unternehmer, inkl. Deponiegebühren
- Transportdistanz 15 km
- Baugrubentiefe bis 250 cm

pro m³ Fr. 27.20
Die Beschreibung der Hauptleistung (H) kann auf zwei Arten erfolgen (Bild 17):

- einfach
 (wie im Bild 16)

- kombiniert
 (die Katalog-Leistungseinheit wird aus bestimmten Standard-Mengen von bestimmten Leistungen der nächsttieferen oder evtl. noch detaillierteren Ebenen zusammengesetzt, z.B. Berechnungselemente des CRB, wie im Bild 18).

\[
\begin{align*}
I_{ij} & \quad H_{ij} \quad N_{ij} \quad E_{ij} \quad P_{ij} \\
(a) \text{ einfache Katalog-Leistungseinheit} \\
\therefore & \quad (P_{ij} = \sum_{k} K_{i_{jk}} + K_{i_{jk}}) \\
\text{evt. allg. Teil von } H_{ij} & \\
\therefore & \quad H_{ijk}, N_{ijk}, M_{ijk}, P_{ijk} = K_{ijk} \\
\text{evt. weitere Detaillierung} & \\
\therefore & \quad N_{ij}, K_{i_{jk}} \\
(b) \text{ kombinierte Katalog-Leistungseinheit} \\
\end{align*}
\]

(Identifikation, Hauptleistung, eingerechnete Nebenleistungen, Menge, Einheitspreis, Kosten, Mengeneinheit)

Bild 17: Arten der Beschreibung der Hauptleistungen

Die Entwicklung von kombinierten Katalog-Leistungseinheiten ermöglicht es, die zugehörigen Einheitspreise nicht

- statistisch
 (Mittelwert von Einheitspreisen aus der Praxis)

sondern

- rechnerisch
 (Kalkulation aus Standard-Aufbau und Einheitspreisen tieferer Ebenen)
zu erfassen. So können z.B.

- ein Katalog-Einheitspreis pro m² Brücke aus dem Aufbau der Standard-Brücke (Teil-
ysteme, Elemente) und den Katalog-Einheitspreisen für die Elemente (z.B. Anzahl m² Pfeiler/m² Brücke, Anzahl m³ Pfeiler Stahlbeton/m Pfeiler, Einheitspreis/m³ Pfeiler Stahlbeton)

- ein Katalog-Einheitspreis pro m³ Brückenpfeiler aus dem Aufbau des Standard-Pfeilers (Hauptpositionen, Zuschläge) und den Katalog-Einheitspreisen für die Positionen (z.B. Anzahl m² Schalung/m³ Pfeiler, Anzahl kg Armierungsstahl/m³ Pfeiler, Anzahl m³ Beton/m³ Pfeiler, Einheitspreise für Schalung, Armierungsstahl und Beton)

- ein Katalog-Einheitspreis pro kg Brückenpfeilerarmierung aus der Standard-Kombination der Einsatzmittelmengen (Material, Lohn- und Inventarstunden, Fremdleistungen) und den Katalog-Einheitspreisen für die Einsatzmittel

<table>
<thead>
<tr>
<th>102</th>
<th>Baugrubenaushub</th>
</tr>
</thead>
<tbody>
<tr>
<td>.03</td>
<td>Transport Depot Unternehmer t = 250 cm per m³ 27.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUFBAU DES BEREICHUNGSELEMENTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdarbeiten</td>
</tr>
<tr>
<td>**************</td>
</tr>
<tr>
<td>Aushub</td>
</tr>
<tr>
<td>Aushub in offener Baugrube</td>
</tr>
<tr>
<td>Ausmass: fest</td>
</tr>
<tr>
<td>Aufgeladen, eben, bis 250 cm m³ 1 4.20 4.20</td>
</tr>
<tr>
<td>Transporte</td>
</tr>
<tr>
<td>Deponie Unternehmer</td>
</tr>
<tr>
<td>Transportdistanz 15 km</td>
</tr>
<tr>
<td>Ausmass: Transportmittel m³ 1.150 16.00 18.40</td>
</tr>
<tr>
<td>Vergütungen</td>
</tr>
<tr>
<td>Deponiegebühren</td>
</tr>
<tr>
<td>Aushubmaterial m³ 1.150 4.00 4.60</td>
</tr>
<tr>
<td>Berechnungselement total 27.20</td>
</tr>
</tbody>
</table>

Bild 18: Beispiel kombinierte Katalog-Leistungseinheit (CRB)
Die eingerechneten Nebenleistungen stellen eine Art "Zuschlagskalkulation" dar. Diese Leistungen sollen in quantitativer Form angegeben werden, z.B. sind

- 70'000.- Fr. Umgebungs- kostens pro Objekt
- 12.5 % Honorare auf den Hauptgruppen 1 ... 7
- 0.1 m Fugendichtung pro m2 Stützmauer
- 0.50 Fr. Nebenarbeiten pro m3 Aushub
- 2 % Wiederinstandstellungskosten

Sowohl in der Beschreibung der Hauptleistungen wie bei den eingerechneten Nebenleistungen kommen quantitative Angaben vor. Diese können formüliert werden in Form von

- fixen Grössen (z.B. Dicke 15 cm)
- fixen Bereichen (z.B. Transport 5-10 km)
- als Variable (z.B. Antriebsmotor Typ).

3. GLIEDERUNG VON PROJEKTEN IN OBJEKTE

3.1 Zweck

Bild 19: Umfahrung Grüsch, Teil B (a) Situationsplan
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Typ</th>
<th>Text</th>
<th>Abgrenzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>U</td>
<td>UEBERGANGSOBJEKT</td>
<td>- Objektübergreifende Elemente über ganzes Bauhaus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Landverw./Recht</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Ertragslastung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Honorare</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- etc.</td>
</tr>
<tr>
<td>01</td>
<td>T</td>
<td>TRASSE PRAETTIGAUSTRASSE</td>
<td>- Alte Elemente des Trasses der Hauptstrasse</td>
</tr>
<tr>
<td>02</td>
<td>K</td>
<td>UEBERFUERUNG SALAETSCHIS</td>
<td>- Brücke inkl. Widerlager und Flügelmauern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Rampe Nord bis Kreuzung mit Verbindungsstrasse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Sässerbach - Grüsch-Mitte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Rampe Süd bis Wulfweg an der Landquart</td>
</tr>
<tr>
<td>03</td>
<td>T</td>
<td>ANSCHLUSS GRUESCH-MITTE</td>
<td>- Auf- und Abfahrtsachse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Zufahrstrasse von Grüsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Verbindungsstrasse nach Ueberlandquart</td>
</tr>
<tr>
<td>04</td>
<td>K</td>
<td>UEBERFUERUNG UEBERLANDQUART</td>
<td>- Brücke und Widerlager inkl. Flügelmauern bei Anschluss</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grüsch-Mitte</td>
</tr>
<tr>
<td>05</td>
<td>T</td>
<td>GEMEINDESTRASSE SALAETSCHIS-GRUESCH-MITTE</td>
<td>- Nebenstrasse Sässerbach - Grüsch-Mitte parallel Hauptstrasse</td>
</tr>
<tr>
<td>06</td>
<td>K</td>
<td>UEBERFUERUNG FLURWEG GRUESCH-MITTE</td>
<td>- Brücke und Widerlager inkl. Flügelmauern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Rampen Nord und Süd des Flurweges</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Flurweg (Süd) entlang Schwellibach</td>
</tr>
<tr>
<td>07</td>
<td>K</td>
<td>UEBERFUERUNG ROSSGASSE</td>
<td>- Brücke und Widerlager inkl. Flügelmauern</td>
</tr>
<tr>
<td>08</td>
<td>T</td>
<td>VERLEGUNG ROSSGASSE</td>
<td>- Rampen Nord Süd für Ueberführung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Trasse Rossgasse bis Einmündung in alte Kantonsstrasse</td>
</tr>
<tr>
<td>09</td>
<td>K</td>
<td>UEBERFUERUNG RhB</td>
<td>- Brücke und Widerlager inkl. Flügelmauern</td>
</tr>
<tr>
<td>10</td>
<td>T</td>
<td>VERLEGUNG RhB</td>
<td>- Trasse mit Dämmen</td>
</tr>
<tr>
<td>11</td>
<td>T</td>
<td>ANSCHLUSS MUNDADITSCH</td>
<td>- Ausbau alte Strasse Grüsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Schies mit Verkehrsteilen und Einmündung in Frättigaustr.</td>
</tr>
<tr>
<td>12</td>
<td>T</td>
<td>LOKALSTRASSE GRUESCH-SCHIERIS</td>
<td>- Nebenstrasse parallel Hauptstrasse</td>
</tr>
<tr>
<td>13</td>
<td>K</td>
<td>GESCHIEBEFANG FANASERBACH</td>
<td>- Durchlass unter Hauptstrasse</td>
</tr>
<tr>
<td>14</td>
<td>K</td>
<td>DURCHLASS FANASERBACH</td>
<td>- Dichtung unter Hauptstrasse</td>
</tr>
<tr>
<td>15</td>
<td>K</td>
<td>RETENTIONSBECHEK FANASERBACH</td>
<td>- Retentionsbecken mit Nebenanlagen</td>
</tr>
<tr>
<td>16</td>
<td>T</td>
<td>NEUBAU SCHWELLIBACH</td>
<td>- Geröle inkl. Kunstbauten</td>
</tr>
<tr>
<td>17</td>
<td>T</td>
<td>FLURWEG MUNDADITSCH SUED</td>
<td>- Flurweg entlang Schwellibach bis Losgrenze</td>
</tr>
</tbody>
</table>

(b) Gliederung in Objekte, mit Abgrenzungen

Bild 19: Umfahrung Grüsch, Teil B

Gliederungskriterien

Physische/örtliche/geometrische Gliederung

Gliederung nach Nutzungsfunktionen

Zeitliche Abgrenzung, Termine

Rechtliche und finanzielle Aspekte

Organisatorische Aspekte

In den Phasen, die ein Projekt durchläuft, sind auch verschiedene Organisationen (Bauherr, Projektierende, Ausführende, Betreiber ...) unterschiedlich miteinbezogen. Eine klare Gliederung und Abgrenzung innerhalb und unter den Organisationen ist deshalb nötig, um eine rationelle Zusammenarbeit erst zu ermöglichen. Durch die Abgrenzung der Zuständigkeiten und Pflichten (Verträge, Stellenbeschreibungen, Pflichtenhefte usw.) für einzelne Objekte und Teilsysteme können die Verantwortlichen eindeutig bestimmt werden. Da sich die Zusammensetzung der Projektorganisation mit der Zeit ändert, müssen auch die Übergänge (= zeitliche Grenzen) von einem Zustand zum anderen geregelt sein.
Damit sind die Kriterien für eine grobe Projekt-Gliederung dargestellt. Nun sind auf der Ebene der Objekte

- die verschiedenen in der Praxis vorkommenden baulichen Anlagen und Objekte (z.B. Primarschulhaus, einspurige Eisenbahnbrücke, Hangsicherung, Vertikalschacht) in einem Katalog von Anlagen- und Objekten zu klassifizieren

- die Katalog-Objekte bzw. Objekteinheiten (z.B. 1 m Standard-Hauptstrasse oder 1 m3 Standard-Restaurant) zu definieren, zu beschreiben, mit Kostenberechnungen zu versehen und für interessierte Fachleute zugänglich zu machen.

Es ist jedoch nicht das Ziel dieses Berichts, auf diesem Gebiet eingehende Untersuchungen anzustellen. Die Betonung liegt vielmehr auf den weiter unter behandelten Ebenen der Teilsysteme und Elemente.

3.2 Anlagen- und Objektkatalog

Es existiert bereits eine ganze Reihe von solchen Katalogen, insbesondere zum Zweck der Inventarisierung und Ueberwachung bestehender baulicher Anlagen, aber auch zur Festlegung der Projektierungs- und Bauleitungs-Schwieigkeitsgrade und für die Erhebung von Statistiken, z.B.

- Bauwerkarten in den LHO des SIA 102, 103, 108
- Strassen- und Objekterzeichnisse des Bundesamts für Strassenbau
- Objekartten, die im Kontenplan für die Nationalstrassen und für deren baulichen Unterhalt und Erneuerung enthalten sind
- Anlagenkontenplan der SBB
- Bauwerkartenkatalog des Amts für Bundesbauten
- Bauobjekt-Code des Bundesamts für Konjunkturfragen
- BRD/SFB-System (hochbauorientiert)
- Entwürfe für die BDS.

Der wichtigste Punkt eines Anlagen- und Objektkatalogs sind auch hier die Kriterien der Gliederung. Um eine solche Einteilung vornehmen zu können, muss der Anwender entweder über saubere definierte Kriterien verfügen, oder aber muss er eine Liste haben, nach der die überwiegende Mehrheit der Anlagen und Objekte zu klassifizieren ist. Eine Gliederung, sei es nun für Objektarten oder nur

Die Idee, Nebenleistungen mit Hauptleistungen zu verknüpfen (Bild 21), kann auch auf der Objekt-Ebene realisiert werden, wie das Beispiel im Bild 7a zeigt: Zum Objekt "Trasse Objekt B" werden der entsprechende Landwerb, die Vorbereitungs- und Umgebungsarbeiten sowie die Honorare dazugeschlagen, womit die Gesamtkosten des Objekts berechnet sind.

Ein nicht unbedeutendes Problem bei komplexen baulichen Anlagen ist die Bezeichnung und Numerierung der Anlageteile. Im Bild 22 ist ein systematisches Schema für die Anlagen-Numerierung angegeben. Es kann im konkreten Fall durch folgende Massnahmen vereinfacht werden:

- die Objekte werden durchnumeriert, und es wird eine Liste geführt, welche Objekte von welchem Typ sind
- die Anzahl Ebenen und Stellen wird zulasten der Allgemeingültigkeit verkleinert.
Das Beispiel im Bild 22 würde sich z.B. vereinfachen in 12-4231.03, statt 532.03-422.01-315.03.
Ein **durchgehendes Beispiel** für die Gliederung praktischer Projekte im Objekte ist im Anhang F1 dargestellt: die Umfahrung des Ortes Strada im Unterengadin. Auch bei den weiteren Beispielen im Anhang F werden Aufteilungen nach Objekten vorgenommen.

3.4 Katalog-Leistungseinheiten

Wenden nun die Kosten eines neuen Bauvorhabens geschätzt, so ist dieses zunächst anhand der obenstehenden Kriterien in Objekte zu **gliedern**. Eine geeignete Gliederung in Objekte hat sich in praktischen Anwendungen als eine ausserordentlich wirksame Komponente der Kostenübersicht und Kostenbewertung erwiesen (siehe z.B. Anhang F1 Umfahrung Strada). Dann sind die erhältlichen Katalog- oder Erfahrungs-Objektdaten zusammenzustellen (z.B. in ähnlicher Form wie beim Preis- spiegel auf der Positions-Ebene) und auf die neue Situation **anzupassen** (Bild 9). Es handelt sich dabei um Anpassungen an

- aktuelle Preise (z.B. Index)
- örtliche Verhältnisse (z.B. Fundation)
- regionale Bedingungen (z.B. Preise)
- technische Varianten (z.B. anderer Oberbau als in der Standard-Leistungseinheit bzw. beim Erfahrungsobjekt)
- andere Leistungsmenge (z.B. Wiederholungen)
- etc.

Dieses Verfahren wird später auch bei tieferen Ebenen der Kostengliederung verwendet, allerdings in der Regel je weniger häufig, desto tiefer die Ebene. Auf der Ebene der Positionen werden z.T. nur noch die Hauptpositionen angepasst, während bei untergeordneten Positionen die Standard-Kalkulation eingesetzt wird.
3.5 Weitere Aspekte

Für private Bauherren sind Bauprojekte als Investitionen im Rahmen einer geschäftlichen Tätigkeit zu sehen, weshalb auch die Baukosten der Objekte bzw. Teilsysteme oder sogar Elemente in die Anlagenrechnung des betreffenden Unternehmens einzubeziehen sind. Im Betrieb sind auch organisatorische Zuordnungen der Objekte vorhanden, die auch für die Kosten im Projektablauf wichtig sein können. Die Objekte, Teilsysteme und Elemente werden unter Umständen für Betrieb und Unterhalt anders zugeordnet als für die Projektierung und Ausführung. Um Lebenszykluskosten zu berechnen, kann allenfalls eine zweite Hierarchie nach Benützern oder Nutzungseinheiten zum Zuge kommen.

4. BAUKOSTEN - KONTENPLAN

4.1 Zweck

Als nächster Schritt wurde versucht, die Gemeinsame Kostengliederung durch eine Elementkostengliederung mit einstelligen, gemeinsamen oder bauherrenspezifischen Zusammenfassungen zu ersetzen. Dies hat zu einer Lösung (Anhang C3) geführt, die für den Tiefbau nicht als Kontenplan verwendet werden kann und auch im Hochbau den BKP kaum ersetzen wird. Ein heikler Punkt am nun bestehenden System für den Hochbau ist, dass drei Gliederungen (BKP, EKG, NPK) nebeneinander aufgebaut werden, die auf relativ komplizierte Weise miteinander verknüpft sind. Dadurch sind die Voraussetzungen für eine durchgängige Kostenbeherrschung über den ganzen Projektablauf ungünstig. Ein entscheidender Nachteil des bestehenden BKP selbst ist die unvernünftige Konzentration der Kosten auf die Hauptgruppe 2 "Gebäude" (Bild 23).

Bild 23: Verteilung der Kostenanteile des Zürcher Indexes für Wohnbaukosten auf die Hauptgruppen
Im Tiefbau wird oft die Grobgliederung des NPK für Kostenvoranschläge benützt. Für Nationalstrassen ist der Nationalstrassen-Kostenplan zu benützen, was eine Umverteilung von nach dem NPK geteilten Kosten erfordert. Der **Rahmenkontenplan für den Nationalstrassenbau** ist eine relativ komplizierte und unausgesuchte Mischung von Objekt- und andern Kostenkonten. Das Bundesamt für Strassenbau hat für den baulichen Unterhalt und die Erneuerung der Nationalstrassen einen einfacheren Kontenplan entwickelt.

Sowohl im Hoch- wie im Tiefbau ist in der Regel eine Lücke zwischen der Schätzung der Baukosten (mittels m3-, m2- oder m-Preisen) und dem Kostenvoranschlag (mittels Leistungsverzeichnis) vorhanden, was zu Kostenunserhebungen, Kostendiskussionen und Umprojektierungen (wenn der Kostenanschlag dem Bauherrn als zu hoch erscheint) führen kann. Für Kostenberechnungen während der Projektierung existieren in der Praxis zwar teilweise recht verlässliche aber oft etwas unübersichtliche Erfahrungszahlen, die Überraschungen beim KV vermeiden können. Eine anerkannte Methode für **mittlere Kostenberechnungen** (über etwas wie Teilsysteme, Elemente und/oder "Hauptpositionen") wäre jedoch zusätzlich zur Kostengliederung nach Objekten für Kostenermittlungen und Variantenstudien im ganzen Projektverlauf sehr erwünscht. Im Hochbau stossen deshalb die "Elementmethode" und die "Baukostenstufen" mit ihren Kostenkennzahlen und Berechnungselementen in der Praxis auf grosses Interesse.

Die **Zielvorstellung** für die Gemeinsame Kostengliederung, die im Schlussbericht (4) der CRB/VSS-Koordinationsgruppe formuliert wurde, ist noch weitgehend gültig. Aus der Sicht des Tiefbaus soll eine Lösung gefunden werden, die

- über die Projektphasen durchgängig und vertragsfähig ist
- eine klare und stabile Zuweisung von Verantwortlichkeiten ermöglicht
- Kosten in übersichtlicher, ausgewogener und aussagekräftiger Form darstellt
- eine rasche, logische, zweck- und situationsbezogene Abstufung der Detaillierung erlaubt
- Flexibilität für Erweiterungen aufweist
- verschiedenen Sarten gerecht wird und gute Voraussetzungen für eine grundsätzliche internationale Anerkennung bietet.

Auch bei der Gliederung der Objektkosten stellt sich wieder die grundlegende Frage, wie weit alle diese Forderungen überhaupt mit einer **einzigen Gliederung** erfüllt werden können. Da auch kaum den einen oder anderen Forderungen objektiv deutlich mehr Priorität zugewiesen werden kann, sind verschiedene Meinungen über einzelne Aspekte dieser Gliederung absolut verständlich.

Nach den gemachten Erfahrungen zeigt sich aber doch, welchen dieser Zielvorstellungen **sicher** Rechnung zu tragen ist:

- Ein Baukosten-Kostenplan als übergeordnete Struktur für Kostenzusammenstellungen für alle Sparten im Hoch- und Tiefbau wird sehr begrüßt.

Eine wichtige Voraussetzung wird auch die Anpassungsfähigkeit der Gliederung sein, damit der Anwender auch individuelle Wünsche berücksichtigen kann.

Abschliessend sei noch einmal bemerkt, dass der Kontenplan eine Vielzahl von Anforderungen und Wünschen befriedigen muss und dies mit einer geschickten Anwendung auch tun kann. Einige der möglichen Anwendungen werden im Teil II dieses Berichts vorgestellt, weshalb an dieser Stelle nicht näher darauf eingegangen wird.

4.2 Genereller Aufbau

<table>
<thead>
<tr>
<th>Grundstück:</th>
<th>Erwerb Grund und Rechte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ver- und Entsorgung des Grundstückes</td>
</tr>
<tr>
<td>Bauvorbereitung:</td>
<td>Provisorische Installationen</td>
</tr>
<tr>
<td></td>
<td>Sicherung und Wasserhaltung Baugrube</td>
</tr>
<tr>
<td>Erdbau, Unterbau,</td>
<td>Kanalisationen Gebäude</td>
</tr>
<tr>
<td>Vortrieb:</td>
<td>Schüttung, Auffüllung</td>
</tr>
<tr>
<td>Rohbau, Oberbau:</td>
<td>Verkleidung, Gewölbe Tunnel</td>
</tr>
<tr>
<td></td>
<td>Entwässerung Oberbau</td>
</tr>
<tr>
<td></td>
<td>Dachkonstruktion Gebäude</td>
</tr>
<tr>
<td></td>
<td>Fassadenverkleidung Gebäude</td>
</tr>
<tr>
<td></td>
<td>Dacheindeckung</td>
</tr>
<tr>
<td>Installationen:</td>
<td>Heizunginstallationen</td>
</tr>
<tr>
<td></td>
<td>Telekommunikation (Schwachstrom)</td>
</tr>
<tr>
<td>Ausbau:</td>
<td>Leitschranken und Geländer</td>
</tr>
<tr>
<td></td>
<td>Bodenbeläge in Gebäuden</td>
</tr>
<tr>
<td>Betriebsausstattung:</td>
<td>Lagerausräumungen, Behälter</td>
</tr>
<tr>
<td></td>
<td>Transportmittel</td>
</tr>
<tr>
<td>Umgebung:</td>
<td>Verkehrserschliessung und Hartflächen</td>
</tr>
<tr>
<td></td>
<td>Grünflächen und Pflanzen</td>
</tr>
<tr>
<td>Übriges:</td>
<td>Besondere Qualitätsprüfungen</td>
</tr>
<tr>
<td></td>
<td>Finanzierungskosten</td>
</tr>
</tbody>
</table>

Bild 24: Beispiele für Teilsysteme und Elemente auf zwei Ebenen
Bei der Überprüfung der Eignung verschiedener Lösungsmöglichkeiten (NPK-Kapitel, Elemente im Sinne der EKG, bestehende Kontenpläne) zeigte sich, dass der Lösungsansatz in der Pilotstudie der VSS (1) grundsätzlich viele Vorteile hat. Der Baukosten-Kontenplan (Basisversion '90), abgekürzt: BK, der im Anhang B1 wiedergegeben ist, erfüllte die Zielsetzungen am besten. Der BK besteht aus den drei Ebenen

- Kostenhauptgruppen (eine Stelle)
- Kostengruppen (zwei Stellen)
- Kostenuntergruppen (drei Stellen).

Der Baukosten-Kontenplan ist mit dem Zusatz "Basisversion '90", versehen worden, weil aus der Erfahrung und aufgrund individueller Wünsche noch Aenderungen und Ergänzungen denkbar sind. Die einzelnen Konten auf allen drei Ebenen können als Teilsysteme aufgefasst werden und sind deshalb anschaulich (Beispiele sind im Bild 24 dargestellt).

Die dreistelligen Konten des BK können auch als Elemente oder Elementgruppen betrachtet werden. Die genaue Abgrenzung, was für Teile der baulichen Anlage als Teilsysteme und was für Teile als Elemente bzw. Elementgruppen bezeichnet werden, ist nicht entscheidend. Wichtig ist, dass die betreffenden Teile als im allgemeinen physische Einheiten für die Gestaltung, Kostenermittlung, Ausführung, Instandhaltung und für die entsprechende Zuweisung von Verantwortlichkeiten zur Verfügung stehen. Ein Kriterium dafür, dass ein Teil als Element zu betrachten ist, ist die Tatsache, dass es möglich sein muss, ein Element direkt aus Positionen zusammenzusetzen.

Bild 25: Kostengliederung auf Teilsystem-Ebene

Der allgemeine Aufbau des BK für Hoch- und Tiefbauten entspricht auch dem üblichen Gestaltungs- und Herstellungsvorgang für bauliche Anlagen:

- Zuerst werden die Nutzungsfunktionen (z.B. Transportarten) und ihre Quantifizierung (z.B. Raumprogramm) erarbeitet.

- Beim konzeptionellen Entwurf werden dann die Teilsysteme und die Objekte, die dem Nutzungsbedarf genügen und mit der Umgebung zusammenpassen, mit einem Team von Fachleuten gestaltet und aufeinander abgestimmt werden.

- In der Detailprojektierung werden die im konzeptionellen Entwurf vorgesehenen Teilsysteme, Elemente und Leistungspositionen durch die entsprechenden Fachleute im Detail entworfen, optimiert und aufeinander abgestimmt.

- Für die Herstellung produzieren und installieren die Unternehmer und Lieferanten die Teilsysteme, Elemente und Positionen in der verlangten Qualität und Menge mit optimalen Einsatzmitteln (Produktionsfaktoren).

Dieser Gestaltungs- und Herstellungsvorgang gilt nicht nur für Neubauten, sondern er ist auch auf die Erneuerung, den Umbau und die Erweiterung der Bausubstanz anwendbar. Auch die Wartung und der betriebliche Unterhalt beziehen sich auf die Teilsysteme und ihre Elemente (Komponenten). Auch sie werden durch entsprechende Fachleute betreut.

Die Zuordnung kleiner Bauwerke zu den Objekten wurde im Kapitel 3 (Bild 20) gezeigt und diskutiert. Bei den Werkleitungen wird in der Kostengruppe 46 "Einfache Werkleitungen" eine Gruppe von kleinen Teilsystemen zusammengefasst, weil sie oft zusammen geplant und ausgeführt werden und manchmal (z.B. bei Hochbauten) eine relativ geringe Bedeutung haben. Auf der Ebene der Elemente und Teilsysteme wird das hauptsächlich verantwortliche Fachgebiet nicht selten durch Neben-Fachgebiete unterstützt (z.B. Betonzusatzmittel für Tragkonstruktionen, Unterhalt von Messgeräten), was wiederum der Struktur des Leistungsbeschriebes im Kapitel 2 (Bild 15) entspricht.

Unter den Teilsystemen des BK folgen die Elemente (Bauwerkteile), die ihrerseits aus Positionen zusammengesetzt sind. Somit wird klar, dass innerhalb der Kostengliederung sowohl die Elemente als auch die Positionen (= Beschrifte der Arbeitsleistungen und Lieferungen, gegliedert im NPK) Platz finden müssen. Der Baukosten-Kontenplan ist also die übergeordnete Gliederung für

Die Alternativen für eine Kostenberechnung zwischen Grobschätzung und detailliertem Kostenvoranschlag sind im Bild 27 dargestellt. Dabei ist die eigentliche Kostenberechnung und die Grobkontrolle mittels Kennzahlen zu unterscheiden. Für die Kostenberechnung kommt es darauf an, ob

- die betreffenden Leistungsmengen rasch und eindeutig berechnet werden können
- für die betreffenden Leistungseinheiten verlässliche Erfahrungswerte rasch verfügbar sind.

Im allgemeinen dürfte eine Kostenberechnung entlang der physischen Projekt-Gliederung wünschbar sein, weil

- diese Kostenberechnungsart transparenter ist (keine undurchsichtigen Mischwerte wie z.B. m3-Preis für den Beton "über alles")
- Kostendifferenzen bei Änderungen rasch lokalisierbar sind (z.B. Änderung der Schalungsart beim Flusspfleger)
- Ausmass und Abrechnung mit Vergleich zum KV sofort nach Fertigstellung des betreffenden Teilsystems ("Arbeitsgattung") bzw. Elementes (Bauwerkteils) möglich sind.
Dabei können Kennwerte aus anderen Kolonnen durchaus nützlich sein (z.B. kann der Flusspfeilerbetonpreis evtl. aus dem normalen Pfeilerbetonpreis und Anpassungen an die speziellen Verhältnisse berechnet werden).

Grobe Berechnungen über andere Grössen als diejenigen der primären Hierarchie ("Chefzahlen" wie z.B. Anzahl Leute auf Baustelle x Bauzeit x Lohnkostenansatz) sind für Kontrollen nützlich. Obwohl sie bei genügender Erfahrung erstaunlich genau Resultate liefern können, sind solche groben Berechnungen als Instrument der fachmännischen Kostenermittlung und -kontrolle für Bauprojekte jedoch nicht genügend detailliert und verlässlich.

Auf der anderen Seite ist zu beachten, dass mit einem Kontenplan nicht ein unvernünftiger Detaillierungsgrad vorgeschrieben wird. Die Konten sollen nicht eine fixierte Detaillierung für alle Fälle darstellen, sondern einen Rahmen für die Darstellung der Kosten. Das heisst, dass z.B. für ein einfaches Teilsystem eine Aufteilung auf zwei Stellen genügt, während ein anderes, kostspieliges und schwieriges Teilsystem sogar noch in Berechnungselemente weiter aufgeteilt wird. Allerdings bleibt dabei auch klar, dass die Kosten stets an dem für sie vorgesehenen Platz bzw. in Reservefenstern anzugeben sind und keine neuen Zuordnungen erfunden werden sollen.

Der Durchgängigkeit zugute kommt die in letzter Zeit deutlicher werdende Tendenz, dass die Kostenermittlung und die Ausschreibung sich in der Methodik zunehmend angleichen, was eigentlich logisch ist.

- Bei der Ausschreibung interessiert man sich zunehmend, für welches Element und Teilsystem eine Leistung zu erbringen ist. Die Unternehmer denken nicht nur in Positionen, sondern auch in Bauwerksteilen.

4.3 Praktische Zuordnung von Kosten zu den Konten

Ein grosses Hindernis für eine vernünftige Aufteilung in die Hauptgruppen war bisher die Anforderung, die Kosten für das ganze "Bauwerk" in der Hauptgruppe 2 zusammenzufassen und mit dieser Zahl den m3-Preis zu berechnen. Der m3-Preis ist jedoch auch mit dem neuen Kontenplan sehr einfach zu berechnen aus der Summe der Kosten der Hauptgruppen 2 5 (Gebäudekosten) dividiert durch die Anzahl m3 nach SIA. Auch die im Nationalstrassenbau bisher übliche Zusammenfassung in Grundstück, Bauausführung und Honorare ist sehr einfach auszurechnen, wenn man die Hauptgruppe 9 anstelle der Gruppe 81 für die Honorare benützt. Solche einfachen Rechnungen sollten wirklich kein Hindernis für einen vernünftigen Gebrauch der Kontierungsmöglichkeiten sein.
Um Spielraum für Ergänzungen zu haben, wurde die letzte Zahl 9 auf keiner Ebene benutzt. Sie ist das "Reservfenster". Zudem wurde bei den dreistelligen Konti dasjenige mit den Endzahl 0 in der Regel nur für "Allgemeines" oder Baustelleneinrichtungen benutzt. Uebrige Kosten und Uebergangs- konten (Transporte etc.) haben in der Regel die Endzahl 8.

Die Zuordnung der Kosten zu den einzelnen Konten hat sich nicht als besonders problematisch erwiesen, besonders dann, wenn physische Schnittstellen gewählt werden. Die Vergleichbarkeit erleichtert natürlich die Kostenermittlung. Die Quervergleiche zwischen verschiedenen Objekten sind manchmal erläuterungsbedürftig, die Gründe für Unterschiede lassen sich jedoch unter Fachleuten in der Regel relativ leicht erklären. Im allgemeinen lohnt es sich nicht, lange über Abgrenzungen zu diskutieren, ein klärender detaillierterer Leistungsbeschrieb führt eher zum Ziel. Ein Kontenplan dient keineswegs nur und nicht einmal hauptsächlich statistischen Zwecken. Es wäre zu aufwendig, die Kosten aller Projekte so aufzuteilen, dass beliebige Anfragen (z.B. wieviel kostet in der Schweiz 1 m Perronkante?) beantwortet werden können. Solche Kennwerte können fallweise gezielt und aktuell erhoben werden.

Zwei im Zusammenhang mit diesem Bericht wichtige Ueberprüfungen waren:

- die Zuordnung der Konten des Rahmenkontenplans für den Nationalstrassenbau zum Baukosten-Kontenplan (Anhang B7)

- die Zuordnung des Kostenvoranschlags für eine Brücken-Instandstellung zum BK.

In beiden Fällen zeigte sich, dass eine Kostendarstellung mittels des BK ohne Schwierigkeiten möglich und sogar vorteilhaft gewesen wäre.
4.4 Katalog-Leistungseinheiten

Auf den Teilsystem-Ebenen bestehen unseres Wissens keine systematisch gesammelten oder aufbereiteten Katalog-Leistungseinheiten. Im Rahmen der "Werkmaterialien" werden jedoch für die erfassten, realisierten Objekte auch die groben Teilsystem-Kosten der BKP-Hauptgruppe 2 "Gebäude" angegeben.

In der Praxis bestehen allerdings für verschiedene Teilsysteme (vgl. Bilder 7 und 13) Erfahrungswerte, z.B. Kosten pro m² Straßenoberbau eines bestimmten Typs, pro m³ Stahlbetontragkonstruktion im Hochbau, pro m² Fassadenverkleidung oder Dachverkleidung eines bestimmten Typs, pro Heizungseinheit, pro m² Bodenbelag (Durchschnittspreis für bestimmten Ausbau-Standard), pro m² Grünfläche und Bepflanzung, usw.

Die Teilsystem-Einheiten können wiedermus nicht nur statistisch erfasst, sondern rechnerisch aus den zu ihnen gehörigen Elementen aufgebaut werden (Bild 25), z.B. 1 m² Dachdeindeckung mit Kiesklettbedach aus Isolation, Schutzschichten und Dacheinfassungen.

4.5 Weitere Aspekte

Eine Anzahl allgemein interessanter Aspekte war im Rahmen der Ausarbeitung des BK genauer zu studieren. Die Kosten der Baustelleneinrichtung werden als mengenunabhängiger, aber teilweise zeitabhängiger (Vorhalzeit) Fixkostenanteil oft gesondert berechnet und angeboten. Die Baustelleneinrichtung kommt bei den heutigen Kostengliederungen auf allen Ebenen vor

- im Objekt (z.B. Kran)
- im Teilsystem (z.B. Lehrgerüst, oder Gerüst für äussere Oberflächenbehandlung, oder Tunnelbohrmaschine)
- im Element (z.B. Baustelleneinrichtung für Ankerarbeiten oder Pfahlungsarbeiten)
- in der Position (wenn sie einzurechnen ist).

Trotzdem könnte der Versuch unternommen werden, die Baustelleneinrichtungen im Hoch- und Tiefbau etwas einheitlicher zu behandeln und zu beschreiben.

Eine gemeinsame Untersuchung sollte auch bei den verschiedenen Werkleitungen und Entwässerungsleitungen unternommen werden. Einerseits können sie im BK wegen Zuständigkeits- und räumlichen Abgrenzungen an verschiedenen Orten vorkommen (Hauptgruppen 0, 1, 2, 3, 7), andererseits sind sie als einzelne Teilsysteme verbunden. Schliesslich sollen sie, wie die Gebäudeinstallationen, koordiniert geplant, ausgeführt und in Betrieb gesetzt werden.

Vorfabrizierte und an Ort gefertigte Anlageteile sollten in der Kostengliederung nicht primär unterschieden werden. Vorfabrikation gibt es nämlich auf allen Ebenen:

- Objekte (z.B. Normhalle)
- Teilsysteme (z.B. Stahltragkonstruktion)
- Elemente (z.B. Stahlstützen komplett)
- Positionen (z.B. liefern Stahl-Profilträger bearbeitet).

Da hier eine physische Gliederung als primäre Hierarchie verwendet wird, können vorfabrizierte Anlageteile leicht identifiziert und im Leistungsbeschrieb entsprechend spezifiziert werden.
Die Honorarkosten werden ebenfalls unterschiedlich zugeordnet

- gesamthaft in einer Hauptgruppe (einzelne grosse Bauherren) oder Gruppe
- aufgeteilt nach Hauptgruppen oder Gruppen
- eingerechnet in Unternehmerleistung.

Weitere Aspekte sind die Teuerung und das Unvorhergesehene. Die Teuerung wird

- entweder zentral ausgewiesen
- oder den einzelnen Konten zugeordnet

je nach Verlangen des Bauherrn. Auch beim Unvorhergesehenen kann man unterscheiden zwischen

- zentraler Reservenbewirtschaftung (z.B. in der Gruppe 84)
- Verteilung der Reserven auf die einzelnen Fachgebiete (z.T. unterschiedliche Ansätze je nach Risiko).

Wie bei den Baustelleneinrichtungen und Honoraren wurde im BK versucht, eine flexible Lösung anzubieten, d.h. mehrere Möglichkeiten offen zu lassen, wobei dann der einzelne Bauherr oder die Gesamtleitung eines Projekts weitergehende Weisungen erteilen kann. Teuerung und Unvorhergesehenes sind eigentlich Uebergangskenoten, denn unvorhergesehene Kosten und Teuerungen gehören am Schluss zu den Leistungen.

5. ELEMENTGLIEDERUNG

5.1 Zweck

Nach den Teilsystemen sind die Elemente die nächstdetailliertere Ebene der Gestaltung und Erstellung von baulichen Anlagen. Auch für diese Ebene sind wieder die Leistungen zu definieren und die Kosten zu berechnen. Dabei soll wieder unterschieden werden zwischen

- Projekt-Elementen (realen Bauwerksteilen)
- Katalog-Elementeinhheiten

wie dies in Kapitel 2 dieses Berichts (Bild 9) als allgemeine Grundlage vorgestellt wurde.

Bild 28: Benützung existierender Systeme

Im Tiefbau existieren hauptsächlich der NPK der VSS (Tiefbau) und des SIA (Untertagbauer) sowie der Rahmenkonzepte für die Nationalstrassen (Bild 28). Den Kantonen wurde auch ein Kontenplan für den baulichen Unterhalt und die Erneuerung der Nationalstrassen zur Verfügung gestellt. Der NPK ist das bedeutendste Arbeitshilfsmittel im Tiefbau. Er ist teilweise direkt in Teilsysteme und Elemente sowie nach projektspezifisch wählbaren Bauteilen gegliedert, teilweise auch in Arbeitsgattungen im Sinne des CRB. Kostenzusammenstellungen nach der NPK-Gliederung sind auf die Rahmenkonzepte umzurechnen, ein Schlüssel wird nicht vorgegeben. Im Bild 28b ist auch eine Einordnung der Elementgliederung, die durch die Art der existierenden Arbeitshilfsmittel weitgehend vorgezeichnet ist, dargestellt.

- Sie erschwert die Kostenermittlung, da Durchschnittswerte verwendet werden, die nur durch die Kostenanteile der Komponenten erklärt werden können. Sie erschwert den Uebergang zur Ausschreibung nach Leistungspositionen.
Sie ist für die Wartung, die Erneuerung und den Umbau ungeeignet, weil bei dieser Art Bauvorhaben die unterschiedliche Art des Unterhalts, die unterschiedliche Lebensdauer der Bauwerkssteile und die Gestaltungsmöglichkeiten mit bestehender Bausubstanz wichtig sind.

Bild 29: Verwendung der Arbeitsmittel
Im folgenden werden die Verwendungszwecke der Elemente für einige wichtige Aktivitäten im Projektablauf dargestellt:

Kostenschätzung

Auch mit wenig detaillierten Angaben zum Projekt soll eine rationelle Ermittlung der zu erwartenden Kosten möglich sein. Dabei sind nicht nur die absoluten Kostengrößen und ihre Struktur und Vollständigkeit von Interesse, sondern auch ihre möglichst geringe Streuung.

Anforderungen:
- einfache, klar beschreibbare, wesentliche Objekte, Teilsysteme und Elementgruppen
- rasch zu erfassende Mengen
- geringe Streuung der Kosten pro Mengeneinheit
- einfach erhältliche Kostendaten.

Kostenvoranschlag, Devisierung, Ausschreibung

Um ein Element und die darin enthaltenen Leistungen zu definieren, muss sein Aufbau aus Normpositionen bekannt sein. Daher sind in einem vollständig nach Teilsystemen und Elementen gegliederten Objekt die wesentlichen NPK-Positionen nach Art und Menge bekannt. Somit sollte eine geeignete Software für jedes dieser Objekte einen Kostenvoranschlag und ein Leistungsverzeichnis nach NPK zumindest als Arbeitsentwurf automatisch erstellen können.

Anforderungen:
- klare Verknüpfung Elementgliederung - NPK
- relativ rasch zu erfassende Mengen
- NPK mit Fixpositionen und Richtpreisen.

Kosten-Management

Im weiteren sollten die Auswirkungen von Entscheidungen auf der Ausschreibungs- und Vertragsbene (Teilsysteme und Elementgruppen) ohne weiteres und unverzüglich nachgeführt werden können (z.B. Bestimmung Mehr-/Minderausmäße in den Vertragspositionen, Änderungen der Baustelleneinrichtung, Nachtragsoffenen, Finanzierungsmöglichkeiten aus KV).

Anforderungen:
- Einfache und klare Zuordnung von der Elementgliederung zum Baukosten-Kontenplan
- Elementgliederung für Änderungen und Ergänzungen auch während Ausführung tauglich
- zeitliche und entscheidungsbezogene Abgrenzbarkeit der Teilsysteme und Elemente im Projektablauf
- einfache und klare Verknüpfung der Teilsysteme und Elemente mit dem NPK und den Verträgen.

Auswertung, Statistik

Schon während des Projektablaufs und nach Projektabschluss sollten genauere (z.B. gemäss Angebot) bzw. effektive Element-Kosten und Element-Leistungsbeschreibungen (effektive Positionen, etc.) als Datengrundlage für weitere Projekte dienen können, ohne grossen Nach- und Umrechnungsaufwand.

Anforderungen:
- klare Beschreibung der enthaltenen Leistungen
- Vergleichbarkeit mit Elementen anderer Projekte
- klare Verknüpfung Kontenplan - Elementgliederung - NPK (Verträge): Durchgängigkeit.

Umbau, Erneuerung, Ersatz

Auch die Planung und Realisierung von Instandhaltungs- bzw. Unterhaltsmassnahmen muss sich auf eine Elementgliederung stützen. Idealerweise sollte diese mit der physischen Gliederung (Bild 9) übereinstimmen oder zumindest einfach aus dieser ableitbar sein.

Anforderungen:
- einheitliche Lebensdauer des einzelnen Elementes
- kombinierbar mit nicht erneuerter Bausubstanz
- einfach zu planende und auszuführende Wartungs- und Instandhaltungsleistungen ("Wartungs-NPK") pro Element.

Wie das Teilsystem-Konzept der Schichttechnik beim CADD entspricht, so entspricht nun das Konzept der Elementgliederung der Element- und Komponententechnik für das EDV-gestützte Entwerfen und Zeichnen. Zudem entspricht das Konzept der hierarchischen Kostengliederung (Bild 6) und die Darstellung der Katalog-Leistungseinheiten (Bild 15) der Verwendung von Klassen (Arten), Gegenständen (Objekten), Eigenschaften (Attributen) und Ausprägungen (Werten) bei der objektorientierten Programmierung und den wissensbasierten Expertensystemen.

5.2 Genereller Aufbau

Die wichtigste Grundlage für den Aufbau einer Elementgliederung ist die klare Einordnung eines Element-Katalogs im Verhältnis zum Baukosten-Kontenplan und zum NPK. Im Bild 30 sind Alternativen dafür aufgezeichnet:
- Die Ausschreibung erfolgt über ein Leistungsverzeichnis mit Elementen (Bild 30a). Der Normpositionen-Katalog wird bei der Ausschreibung höchstens indirekt für die Definition von Elementen verwendet.
- Der Element-Katalog und der Normpositionen-Katalog werden kombiniert verwendet (Bild 30b). Sie hängen aber direkt miteinander zusammen, indem die Katalog-Elemente aus Normpositionen aufgebaut sind und die Teilsysteme des BK ihrerseits aus Elementen aufgebaut sind.
- Es werden keine Elemente verwendet (Bild 30c).

Die mittlere Variante (Bild 30b) entspricht am besten den Zielsetzungen, die anderen Varianten sind aus ihr ableitbar. Deshalb wird diese Variante hier weiterverfolgt.

Eine erste Liste von detaillierten Elementen aus dem Tiefbau mit ihren Mengeneinheiten, die sich aus der Analyse praktischer Projekte ergeben hat, ist im **Anhang C1** zusammengestellt. Berechnungs-

- reale Projektstruktur
- Baukosten-Plan (BKP)
- Bauleistungs-Gliederung (NPK)

mittels Relationen verknüpft.

Im Bild 9 ist auf der linken Seite die Projektgliederung und die hierarchische Bildung von Projektteilen (z.B. Elemente) und ihren Kostensummen (z.B. ∑k für das dargestellte Teilsystem) gezeigt. Für die Kostenübersicht und -auswertung können Durchschnittswerte für gleichartige Leistungseinheiten aus allen Projektteilen gebildet werden (Statistik):

- Durchschnittskosten für gleichartige Elemente (z.B. durchschnittliche Kosten pro m Stütze oder pro m² Innenwand eines bestimmten Typs über das ganze Projekt, durchschnittliche Kosten pro m³ Schüttung und Auffüllung der gleichen Art oder pro m² Stützmauer-Rohbau des gleichen Typs über das ganze Projekt). Dazu ist ein Verzeichnis aller Elemente der gleichen Art erstellten, die Kostensumme (Σ über E) zu bilden und der Durchschnittswert als Kosten pro Leistungseinheit zu berechnen. Umgekehrt kann ein entsprechender Erfahrungswert genommen, auf das Projekt angepasst und mit der jeweiligen Anzahl Mengeneinheiten multipliziert werden, was dem im Kapitel 2 (Bild 10) dargestellten Verfahren der Kostenberechnung entspricht.

- Durchschnittskosten für gleichartige Positionen (z.B. durchschnittliche Kosten pro m³ Beton der gleichen Art für das ganze Gebäude, durchschnittliche Kosten pro m² Humussierung derselben Art über das ganze Trasseoobjekt). Dazu ist ein Leistungsverzeichnis aller Positionen der gleichen Art zu erstellen, die Kostensumme (Σ über P) zu bilden und der Durchschnittswert als Kosten pro Leistungseinheit zu berechnen. Die Kostenberechnung aus Erfahrungswerten erfolgt analog.

- Durchschnittskosten für gleichartige Einsatzmittel (z.B. durchschnittliche Kosten pro t Armierungsstahl eines bestimmten Durchmessers über die ganze Brücke, durchschnittliche Kosten pro Mittelohnstunde oder pro m³ geliefertes Schüttmaterial über das ganze Trasseoobjekt). Dazu ist ein Verzeichnis aller eingesetzten Mittel der gleichen Art zu erstellen, die Kostensumme (Σ über F) zu bilden und der Durchschnittswert pro Faktoreinheit zu berechnen. Die Kostenberechnung aus Erfahrungswerten erfolgt analog.
Auf der Ebene der Teilsysteme und Objekte ist die Auswertung und Verwendung von solchen Durchschnittswerten für gleichartige Teilsysteme (z.B. Kosten der Entwässerung pro m² Hauptstrasse, Σ über T) und Objekte (z.B. Kosten pro m Tunnel im Fels eines Nationalstrassenabschnittes, Σ über O) möglich. Der Unterschied zur Summation bei der Projekt-Gliederung (Σ über ijklm im Bild 9) besteht darin, dass bei der Projekt-Gliederung lediglich über die Größen der nächsthöheren Hierarchieebene summiert wird, nicht über gleichartige Projektteile aus dem ganzen Projekt. Für die Durchschnittsberechnung sind auch Zwischenlösungen möglich (z.B. Durchschnittswerte pro Objekt oder pro Teilsystem). Auf allen Ebenen zu beachten ist jedoch, dass alle diese Durchschnittswerte nur Hilfsmittel sind, um die Kosten des realen Projektes zu bestimmen. Im konkreten Fall sind also stets die projektspezifischen Kosten der projizierten und durchgerechneten Lösung ausschlaggebend. Die Durchschnittswerte dienen als Hilfsmittel zur Kostenermittlung, zum Vergleich und zur Kontrolle auf der betreffenden Ebene.

5.3 Überprüfung anhand von Beispielen

Wie im Abschnitt 1.4 dieses Berichtes festgehalten wurde, ging es bei diesem Forschungsprojekt vor allem darum, die Möglichkeiten der Elementmethode im Tiefbau im Zusammenhang mit der Arbeitsgattungsgliederung abzuklären, entsprechende Vorschläge auszuarbeiten und anhand von Anwendungsbeispielen aus der Praxis zu überprüfen.

Im Anhang F im Teil II werden folgende Anwendungsbeispiele vorgestellt:

ENGADINERSTRASSE: UMFAHRUNG STRADA

Die im Bericht dargestellte Methode der Kostengliederung wird für die besonders wichtige Kategorie Hauptstrassen mit ihren vielfältigen Kunstbauten überprüft.

Zuerst wird die ca. 3 km lange Umfahrung in 23 Objekte unterteilt (gruppiert nach Trassenbauten inkl. Stützmauern, Brücken inkl. Ueber- und Unterführungen, restliche Objekte wie Gewässerkorrekton-

In einem zweiten Schritt werden die Kosten für sechs ausgewählte Objekte über Teilsysteme und Elemente berechnet. Für jedes Objekt resultiert eine übersichtliche Kostenberechnung auf den drei Ebenen Kostenuntergruppe, Kostengruppe und Kostenhauptgruppe des Baukosten-Kontenplans.

In der Regel werden dabei Elementkosten aufgrund von charakteristischen Mengeneinheiten und Einheitspreisen berechnet und zu Teilsystem- und Objektkosten summiert. Am Schluss werden die Kosten pro Objekt und Teilsystem in einer Matrix zusammenfassend dargestellt.

In einem dritten Schritt werden schließlich 13 ausgewählte Berechnungselemente mit ihrem Aufbau aus wichtig Positionen des VSS-NPK erarbeitet.

N8 TEILSTRECKE INTERLAKEN - BRIENZWILER: CHÜEBALMTUNNEL

Bei diesem Objekt werden die Möglichkeiten der Elementgliederung bei einem Tunnelobjekt mit Sprengvortrieb in den verschiedenen Projektphasen gezeigt.

Zuerst werden wiederum eine Kostenschätzung und ein Variantenvergleich über vier verschiedenartige Objekteinheiten (drei Profiltypen und Sohlgewölbe) durchgeführt. Drei Objekteinheiten unterscheiden sich in der Stärke des Profilgewölbes, das Sohlgewölbe ist eigentlich ein Element.

In einem zweiten Schritt werden die Kosten der vier Objekteinheiten, die nun detaillierter aus Teilsystemen, Elementen und teilweise Berechnungselementen zusammengesetzt sind, berechnet. An-

In einem dritten Schritt wird zunächst gezeigt, wie aus den Berechnungs­elementen ein vorläufiges Leistungsverzeichnis, das dann noch durch die Klein-Positionen zu ergänzen ist, erstellt werden kann. Schliesslich wird eine Abrechnung des Hauptunternehmers, gegliedert nach dem Aufbau des Baukosten-Kostenplans, dargestellt.

N3 BASEL - ZÜRICH: AARETALBRÜCKE BEI SCHINZNACH BAD

Beidiesem Objekt geht es darum, zu zeigen, dass die Elementmethode auch im Grossbrückenbau sinnvoll angewendet werden kann. Gewählt wird das Objekt "Bereich Aare" mit ca. 1,1 km Länge.

Eine grosse Zahl von Elementen (Ausführungs­arten) zu den Elementgruppen

114	Sicherung und Wasserhaltung Baugrube (10)
115	Spezialfundationen (2)
221	Aushub, Abtrag (6)

usw.

werden grob definiert und mit Mengeneinheiten und projektbezogenen Mengen versehen.

KANTONSSTRASSE WOLFENSCHESSEN - OBERRICKENBACH: ZELGLI - SCHÜPFEN, BAULOS NORD

Anhand einer Strassen­neuanlage wird eine Gliederung in Objekte und Teil­objekte für Trasse­bauten mit grossem Anteil an Stützmauern erläutert. Dann wird der Baukosten-Kostenplan für Stützmauern und Trasse­stücke vorgestellt. Schliesslich wird die Aufteilung im Überblick gezeigt.

GESAMTMELIORATION OTELFINGEN - BOPPELSEN: ENTWÄSSERUNG AREAL SGG

Das Beispiel zeigt die Anwendung der neuen Kostenermittlungshilfsmittel im kulturtechnischen Ingenieurbau.

5.4 Katalog-Leistungseinheiten

Die Katalog-Elemente werden nach dem Baukosten-Kostenplan (Anhang B1) geordnet. Eine erste Liste von detaillierten Elementen aus dem Tiefbau ist im Anhang C1 zusammengestellt. Es handelt sich dabei um eine überarbeitete Fassung der entsprechenden Liste in (9).

Katalog-Leistungseinheiten können grundsätzlich einen einfachen oder einen komplexen Positions­aufbau haben (Bild 31). Der komplexe Positions­aufbau hat den Nachteil, dass der Katalog eine viel

Die Katalog-Elemente sind der effektiven Situation anzupassen, bevor sie in die Projekt-Gliederung als Elemente übernommen werden. Beispielsweise sind Katalog-Elemente mit Wandstärken von 20 cm und 30 cm berechnet worden. Beträgt die effektive Wandstärke 25 cm, so ist der Einheitspreis pro m2 an diese Wandstärke anzupassen. Ähnliche Anpassungen ergeben sich z.B. aus Abweichungen des effektiven Elementes vom Katalog-Element bezüglich Qualität, Leistungsmenge und Lage.

Aus praktischen Erfassungsgründen kann es nützlich sein, Übergangs-Elemente zu definieren, die in einem separaten Konto erfasst werden. Ein Beispiel dafür sind die Transport-Elemente, die auch in die Leistungseinheiten m3 Abtrag oder m3 Aufschüttung eingerechnet werden könnten.

Die Katalog-Elemente können ihrerseits wieder zu kombinierten Leistungseinheiten (in diesem Fall zu Katalog-Teilsysteme und Katalog-Objekteinheiten) zusammengesetzt werden (Bild 25).
5.5 Weitere Aspekte

Die Frage der Ausschreibung mit Elementen wurde bereits am Anfang des Abschnittes 5.2 (Bild 30) angeschnitten. Eine Ausschreibung mit Elementen würde bedingen, dass ein einigermaßen vollständiger Element-Katalog vorhanden ist, was heute nicht zutrifft. So wird man eher auf die Normpositionen zurückgreifen, diese jedoch möglichst weitgehend über die Elemente bestimmen.

Ein mit Preisen ausgefülltes Leistungsverzeichnis hat auch die Funktion einer Preisliste. Deshalb muss das Leistungsverzeichnis möglichst vollständig sein und enthält eine grosse Menge unwichtiger Positionen. Der Unternehmer muss die wichtigen Positionen wiederum herausfiltern. Dieses Problem könnte mit dem folgenden Vorschlag einfacher gelöst werden:

- Eine Fachstelle (z.B. der SBV) berechnet Richtpreise für alle fest definierten Standardpositionen, insbesondere Richtpreise für weniger wichtige bis unwichtige Leistungseinheiten (Nebenpositionen).

- Der Ingenieur schreibt nur die wichtigeren Positionen aus (die sich weitgehend aus den Elementen ergeben). Dazu kommt ein geschätzter Betrag für bestimmte Nebenleistungen (Bild 15). Der Unternehmer kann auf sie einen Rabatt gegenüber den Richtpreisen anbieten.

Mit diesem Vorschlag könnten sich die Projektbeteiligten auf einfache Weise auf die wesentlichen Positionen konzentrieren.
6. KONZEPT NPK BAU 2000

6.1 Zweck

6.2 Genereller Aufbau

Grundlagen für eine Leistungsbeschreibung und eine Kostenberechnung mit dem NPK Bau 2000 sind

- Bauprojekt mit Projekt-Gliederung
- Kostenschätzung über Objekte, Teilsysteme und evt. Elemente

Die Leistungsverzeichnisse für das Projekt werden nun fachgebietsbezogen nach NPK-Kapiteln gegliedert, aber auch nach der Projekt-Gliederung.

Betrachtet man die in den Kapitelhauptgruppen enthaltenen Kapitel mit den jeweiligen Herausgebern, findet man in

100 Vorbereitungs-, Spezialtiefbau-, Instandsetzungs- und Umgebungsarbeiten, vor allem von CRB und VSS gemeinsam zu bearbeitende Kapitel

200 Trasse-, Kunst- und Untertagbauerbeiten wird von Kapiteln gebildet, für welche fast ausschließlich VSS oder SIA zuständig sind.

300 Rohbauarbeiten (CRB-Kapitel)

400 Arbeiten für Sanitär-, Heizungs-, Lüftungs- und Klimaanlagen bzw.

500 Arbeiten für Elektroanlagen und Telekommunikation, nebst CRB-Kapiteln sind auch die Kapitel aus den Fachingenieurbereichen enthalten.

600 Ausbau- und Reinigungsarbeiten (CRB-Kapitel)

700 Einrichtungs-, Ausrüstungs- und Ausstattungsarbeiten inkl. Arbeiten für Transport- und Förderanlagen

Die Kapitelhauptgruppen

000 Kosten für Grundstück

800 übrige Aufwendungen

Die Numerierung der Kapitelgruppen und Kapitel wurde unter Berücksichtigung des gesamten Bauwesens und in Absprache mit verschiedenen Fachbereichen (z.B. Untertagbau, VSEI) neu gestaltet. Das Hauptziel war, eine Gruppierung möglichst entsprechend

- den Fachgebieten
- dem Ablauf von Projektierung und Ausführung

Kriterien begünstigt natürlich auch die Bildung fachbezogener Auszüge aus dem Gesamt-NPK für die entsprechenden Anwender und die Durchführung gebietsweiser Ueberarbeitungen, wobei die Systematik trotzdem einheitlich bleibt.

6.3 Einige praktische Aspekte der Ausführung

Im Abschnitt 4.3 wurde bereits festgehalten, dass konsequent objektweise und nach NPK-Kapiteln und allenfalls NPK-Abschnitten gegliedert ausgeschrieben werden sollte. Dabei kann jedoch zusätzlich ein zusammenfassendes Leistungsverzeichnis über mehrere Objekte zum Ausfüllen der Preise abgegeben werden, wenn dieselben Preise für alle Objekte gelten sollen.

Die Rechnungen sollen grundsätzlich nach Objekten, NPK-Kapiteln und teilweise NPK-Abschnitten gegliedert sein, so dass die Kosten dem Baukosten-Kontenplan einfach nachgeordnet werden können (z.B. Titelblatt mit entsprechenden Summen).

6.4 Katalog-Leistungseinheiten

Die Normpositionen sind die Katalog-Leistungseinheiten auf der Ebene der Positionen. Der Positionsauflauf für den NPK Bau 2000 ist im Schlussbericht (5) im Detail dargestellt und erläutert. Im Bild 32 wird der Positionsauflauf der neuen und der alten Normpositionen verglichen:

- beim VSS-NPK ist zu beachten, dass Bauteile explizit benutzt werden (z.B. in der ersten Stelle der Unterposition), beim CRB kommen sie implizite allerdings auch vor (z.B. im Positionsbeschrieb oder als Unterpositionen)

- beim CRB-NPK ist zu beachten, dass Positionseigenschaften auf vier Zwischenebenen vorkommen

 . Vorbemerkungen (zu Kapitel, Abschnitt, Unterabschnitt)

 . Einleitender Text (zur Position)

 . Ergänzender Text (in mehreren Unterpositionen)

 . Ergänzender Text (in Variablen)

sowie allenfalls weitere klassifizierende Positionseigenschaften (Positionsliste, Spezialzeichen).

- beim NPK Bau 2000 ist zu beachten, dass eine Gliederung der Leistungsmenge entsprechend der Projekt-Struktur (Objekt, Teilsystem/Positionslage, Element) sowie Textergänzungen (z.B. Produktinformation) möglich sind.

Im CRB-"Bauhandbuch" sind neben den Normpositionen noch sogenannte "Standardpositionen" definiert, die gängige, technisch bewährte, wirtschaftliche Lösungen darstellen, nur noch produktbezogene Variable enthalten können und besondere Unterpositionsnummern haben.

Bei den Normpositionen des VSS kommen Textbausteine vor, die sich in verschiedenen Positionen wiederholen (z.B. Erschwernisse bei maschinellem Aushub in Pos. 12505.1 und 13130.1). Der NPK ist konsequent hierarchisch aufgebaut, bei Ueberarbeiten muss jedoch die Lage der Textbausteine bekannt sein. Demgegenüber können die Normpositionen des CRB über die Zuordnung zum BKP an verschiedenen Orten verwendet werden, was teilweise dazu führt, dass für die Ausschreibung wenig bedeutender Projekteile theoretisch eine ganze Reihe von NPK-Kapiteln beigezogen werden müssen (z.B. Bauvorleistungs- und Umgebungsarbeiten). Als Übergangspositionen könnte man die Zuschriftpositionen bezeichnen.

Trotzdem bestehen mehrere Möglichkeiten für **projektspezifische Spezifikationen**

- Bauteile (VSS)
- Variable (CRB)
- Leistungsmenge.

Damit ist wiederum klar zu unterscheiden zwischen
- der *Normposition als Katalog-Leistungseinheit*
- der **Projekt-Position** mit der Leistungsmenge und anderen projektspezifischen Angaben.

wie dies im Bild 10 dargestellt ist.

6.5 Weitere Aspekte

Bei den heutigen Ausschreibungen werden die Mengen oft nur gesamthaft angegeben. Der Unternehmer muss dann aus den Plänen herausfinden, wo die Mengen sind.

| 451 | Schalung für Wände und Stützmauern
mit direkter Abstellmöglichkeit
Schalhöhe cm 150 bis 300 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wände A + B</td>
<td>2.50 m x (10 + 6)m = 40 m²</td>
</tr>
<tr>
<td>Wand C</td>
<td>2.50 m x 4 m - 2 m² = 8 m²</td>
</tr>
<tr>
<td>Wand D</td>
<td>2.50 m x 10 m + 1.50 m x 2 m = 28 m²</td>
</tr>
<tr>
<td>Stützmauer E</td>
<td>1.80 m x 5 m = 9 m²</td>
</tr>
</tbody>
</table>

| 151 | Beton für Wände und Stützmauern
BH, W 28N/mm² 30, PC kg/m³ 300
Wandhöhe cm 150 bis 300
Wanddicke cm 16 bis 20 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wände A + B</td>
<td>40 m² x 0,2 m = 8 m³</td>
</tr>
<tr>
<td>Wand C</td>
<td>8 m² x 0,2 m = 2 m³</td>
</tr>
<tr>
<td>Wand D</td>
<td>28 m² x 0,2 m = 6 m³</td>
</tr>
<tr>
<td>Stützmauer E</td>
<td>9 m² x 0,16 m = 3 m³</td>
</tr>
</tbody>
</table>

(a) Mengenberechnung Innerhalb Position

<table>
<thead>
<tr>
<th>Element</th>
<th>Schalfläche</th>
<th>Betonvolumen</th>
<th>Arm.gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wände A + B</td>
<td>2,5 x (10+6) = 40 m²</td>
<td>8 m³</td>
<td>100 kg/m³ = 800 kg</td>
</tr>
<tr>
<td>Wand C</td>
<td>8 m²</td>
<td>2 m³</td>
<td></td>
</tr>
<tr>
<td>Wand D</td>
<td>28 m²</td>
<td>6 m³</td>
<td></td>
</tr>
<tr>
<td>Stützmauer E</td>
<td>9 m²</td>
<td>2 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85 m²</td>
<td>18 m³</td>
<td></td>
</tr>
</tbody>
</table>

Preisliste Wände und Stützmauern

| 451 Schalung | m² 85 zu Fr. .../m² = Fr. |
| 151 Beton | m³ 16 zu Fr. .../m³ = Fr. |

Bild 33: Varianten für Mengenauszüge
Dieselbe Arbeit hat allerdings der Ausschreibende beim Mengenauzug bereits gemacht. Mit der Ausschreibung sollte die Projekt-Gliederung und ein unverbindliches Mengengerüst mitgeliefert werden, bei der Auftragserteilung könnte dem Unternehmer auch ein detailliertes Mengengerüst als unverbindliche Unterlage für die Arbeitsvorbereitung abgegeben werden. Beide Seiten sind längerfristig daran interessiert, dass klare Leistungen möglichst wirtschaftlich und einwandfrei erbracht werden. Im Bild 33 sind zwei Varianten für Mengenauszüge dargestellt.

Insbesondere bei grossen Bauherren wird teilweise eine Gliederung aller von ihnen vergebenen Arbeiten aus allen Projekten nach den Vertragspartnern (Beauftragte, Unternehmer, Lieferanten) verlangt. Dies ist eine typische sekundäre Zusammenfassung, die jedoch eine Zuordnung aller Leistungen zu den Vertragspartnern verlangt.
7. ANWENDUNG

7.1 Konzept Kostenüberwachung

Neben dem Leistungsumfang und der Qualität sind für den Bauherrn vor allem die Kosten (mit Wirtschaftlichkeit und Finanzierung) und die Termine das Wichtigste. Um sich vor Überraschungen zu schützen und rechtzeitig eingreifen zu können, braucht er entsprechende Informationen und eine Projektorganisation, die die Kosten im ganzen Projektablauf stets unter Kontrolle hat. Im Bild 34 sind die wichtigsten Projektkosten-Informationen und die zuständigen Stellen aufgezeichnet. Auf jeder Ebene werden bestimmte Informationen an die übergeordnete Stelle weitergeleitet, andere dienen der eigenen Kostenüberwachung. Auf der Kostenseite ist das Ziel, in jeder Phase (von der Vorstudie bis zur Inbetriebsetzung und zum Abschluss) den Ueberblick und die Kontrolle über die Kosten zu haben, zu erfüllen. Um die Erfüllung dieses Ziels geht es in diesem Abschnitt.

Bild 34: Wichtigste Projektkosten-Information
<table>
<thead>
<tr>
<th>Phase</th>
<th>BETEILIGTE</th>
<th>BAUHERR</th>
<th>GESAMT-PROJEKTELEITER</th>
<th>PROJECTIERENDE</th>
<th>BAULEITER</th>
<th>AUSFÜHRENDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VORSTUDIE</td>
<td>- Schätzung Größensumme der Bau- und Nutzungs- kosten (SCHRITT 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VORPROJEKT (generelles Projekt) (Flächenanteil 1-1000) (HLS bis 1:5000)</td>
<td>- legt Kostenrahmen fest</td>
<td>- Kontrolle und Ergänzung Kosten- abschätzung</td>
<td>- Erstellen Kostengroß- abschätzung (SCHRITT 2)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>BAUPROJEKT (Ausführungspläne) (1:100 - 1:200)</td>
<td>- Entscheid Kosten- schätzung</td>
<td>- Kontrolle und Ergänzung Kosten- schätzung</td>
<td>- Erstellen Kosten- schätzung (SCHRITT 3)</td>
<td>- akt. KS</td>
<td>- evtl. KS z. K.</td>
<td></td>
</tr>
<tr>
<td>BEREINIGTES BAUPROJEKT (DETAILPROJEKT)</td>
<td>- Entscheid KV</td>
<td>- Kontrolle und Ergänzung KV</td>
<td>- Erstellen KV (SCHRITT 5)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>VORBEREITUNG</td>
<td>(Pläne für die Ausführung bis 1:200)</td>
<td>- Entscheid Annahme Angebot</td>
<td>- Kontrolle Ausschreibungs- unterlagen (LV)</td>
<td>- Erstellen Ausschreibungs- unterlagen (LV)</td>
<td>- akt. KV</td>
<td>- Erstellen Angebote</td>
</tr>
<tr>
<td>AUSFÜHRUNG</td>
<td>(Planung für die Ausführung, Muster, nach Erfordernis)</td>
<td>- Entscheid gröbere Änderungen</td>
<td>- KV/Auftrags- und Kosten- artikel Ausführung</td>
<td>- akt. KV</td>
<td>- Bericht über Kostenentwicklung</td>
<td>-</td>
</tr>
<tr>
<td>INBETRIEBSETZUNG UND ABSCHLUSS (Pläne des ausgeführten Bauwerks)</td>
<td>- geprüfte Ausschreibungs- abschätzung</td>
<td>- Prüfen, Ergän- zen, Bereinigen Schlüsseldaten</td>
<td>- Aktualisieren Kostenbeiträgen (SCHRITT 10)</td>
<td>- Erstellen Schluss- abschluss Kostenbeiträgen (SCHRITT 9)</td>
<td>- Vergleich mit akt. KV</td>
<td>- Vergleich mit akt. KV</td>
</tr>
<tr>
<td>BETRIEB UND NUTZUNG</td>
<td>- Rechnungsver- kehr</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bild 35: Uebersicht Kostenbeherrschung im Projektablauf

<table>
<thead>
<tr>
<th>SCHRITTE</th>
<th>HILFSMITTEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Größenordnung der Baukosten (nach Objekten)</td>
<td>- Gliederung in Objekte</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>- Teile des Kontenplans</td>
</tr>
<tr>
<td>Vorstudie (SN 640 010)</td>
<td>- Kostenangaben aus Analysen ausgeführter Projekte (Erfahrungswerte)</td>
</tr>
<tr>
<td>Abmessungen Objekte, Landfläche</td>
<td>- Objektkatalog</td>
</tr>
<tr>
<td>2. Kostengroschätzung (nach Teilsystemen)</td>
<td>- Gliederung in Objekte</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>- Kontenplan</td>
</tr>
<tr>
<td>Vorprojekt (=Generelles Projekt, SN 640 011)</td>
<td>- Kostenangaben aus Analysen anderer Projekte (Erfahrungswerte)</td>
</tr>
<tr>
<td>Mengenausüge</td>
<td>- Teilsystem- und Elementkataloge mit kalkulierten Preisen (vgl. Baukostenarten)</td>
</tr>
<tr>
<td>Projekt-Teilsysteme und wichtige Projekt-Elemente</td>
<td>- Gliederung in Objekte</td>
</tr>
<tr>
<td>3. Kostenschätzung (nach Teilsystemen und Elementen)</td>
<td>- Kontenplan</td>
</tr>
<tr>
<td>Kostenberechnung (nach Berechnungselementen)</td>
<td>- Kostengroschätzung</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>- Katalog der Berechnungselemente mit zugehörigen NPK-Positionen und Preisspannen</td>
</tr>
<tr>
<td>Bauprojekt (SN 640 012)</td>
<td>- Gliederung in Objekte</td>
</tr>
<tr>
<td>(=Aufflagepläne)</td>
<td>- Kontenplan</td>
</tr>
<tr>
<td>Mengenausüge</td>
<td>- Kostenangaben aus Analysen anderer Projekte (Erfahrungswerte)</td>
</tr>
<tr>
<td>Projekt-Elemente</td>
<td>- Teilsystem- und Elementkataloge mit kalkulierten Preisen (vgl. Baukostenarten)</td>
</tr>
<tr>
<td>4. Kostenkontrolle (über Kostenschätzung bzw. -berechn.)</td>
<td>- Gliederung in Objekte</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>- Kontenplan</td>
</tr>
<tr>
<td>- Kostenziele Bauherr</td>
<td>- NPK</td>
</tr>
<tr>
<td>Varianten und Änderungen zum</td>
<td>- Einheitspreise "Bauhandbuch"</td>
</tr>
<tr>
<td>Vorgabeprojekt auf Basis</td>
<td>- mit Standardpositionen und Preisspannen</td>
</tr>
<tr>
<td>Erteilung von Aufträgen, Beauftragtenverzeichnis</td>
<td>- Andere Kostenangaben</td>
</tr>
<tr>
<td>Vorausmass</td>
<td>- Gliederung in Objekte</td>
</tr>
<tr>
<td>5. Kostenvoranschlag (nach wesentlichen Positionen)</td>
<td>- Kontenplan</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>- NPK</td>
</tr>
<tr>
<td>- berechnetes Bauprojekt (SN 640 012)</td>
<td>- Einheitspreise "Bauhandbuch"</td>
</tr>
<tr>
<td>z.T. Detailbearbeitung, prov. Ausführungspläne</td>
<td>- mit Standardpositionen und Preisspannen</td>
</tr>
<tr>
<td>Beauftragtenverzeichnis</td>
<td>- Andere Kostenangaben</td>
</tr>
<tr>
<td>Leistungsverzeichnis als Basis</td>
<td>- Gliederung in Objekte</td>
</tr>
<tr>
<td>Vorausmass</td>
<td>- Kostenbegleitungsberatung</td>
</tr>
<tr>
<td>6. Leistungsverzeichnis / Angebot (nach Positionen)</td>
<td>- Elemententwicklung für Bauteile im LV</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>- NPK</td>
</tr>
<tr>
<td>- berechnetes Bauprojekt (SN 640 012)</td>
<td>- Angetore</td>
</tr>
<tr>
<td>z.T. Detailbearbeitung, prov. Ausführungspläne</td>
<td>- Gliederung in Objekte</td>
</tr>
<tr>
<td>Vergabekonzept, Unternehm. und Lieferantenverzeichis</td>
<td>- Kontenplan</td>
</tr>
<tr>
<td>Vorausmass</td>
<td>- NPK</td>
</tr>
<tr>
<td>7. Kostenkontrolle (über Kostenvoranschlag)</td>
<td>- Elemententwicklung für Bauteile im LV</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>- NPK</td>
</tr>
<tr>
<td>- Ausschreibungsunterlagen und Angebote von</td>
<td>- Angetore</td>
</tr>
<tr>
<td>Unternehmern und Lieferanten</td>
<td>- Gliederung in Objekte</td>
</tr>
<tr>
<td>Änderungen Ausführungsprojekt</td>
<td>- Kontenplan</td>
</tr>
<tr>
<td>8. Kostenkontrolle (über Verträge)</td>
<td>- Kostenbegleitungsberatung</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>- Elemententwicklung für Bauteile im LV</td>
</tr>
<tr>
<td>- alle Projektunterlagen</td>
<td>- NPK</td>
</tr>
<tr>
<td>Änderung Ausführungsprojekt, Ausmasse</td>
<td>- aktuelle KV Gesamtprojekt</td>
</tr>
<tr>
<td>9. Schlussabrechnung (über Kostenvoranschlag)</td>
<td>- aktuelle Verträge</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>- NPK</td>
</tr>
<tr>
<td>Abnahmen</td>
<td>- neue Nachträge zu den Verträgen</td>
</tr>
<tr>
<td>Schlussrechnungen</td>
<td>- Gliederung in Objekte</td>
</tr>
<tr>
<td>Unternehm. und Lieferantenverzeichnis</td>
<td>- Kontenplan</td>
</tr>
<tr>
<td>10. Kostenauswertung (nach Objekten, Teilsyst., Elementen)</td>
<td>- aktuelle KV</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>- Elemententwicklung für Bauteile im LV</td>
</tr>
<tr>
<td>- alle Projektunterlagen</td>
<td>- NPK</td>
</tr>
<tr>
<td>Teilrechnungen, Schlussabrechnung</td>
<td>- aktuelle Verträge</td>
</tr>
<tr>
<td>Pläne der ausgeführten Bauwerke</td>
<td>- Berechnung effektive Kosten für die Leistungseinheiten auf versch. Ebenen</td>
</tr>
</tbody>
</table>

Bild 36: Instrumente Kostenbeherrschung

1. **Grössenordnung der Baukosten** (nach Objekten)

 Leistungsangaben:

 - Vorstudie (SN 640 010)
 Strassentyp, Linienführung, grössere Kunstbauten, Gebäudeabmessungen, Einordnung in die Landschaft
 - Mengenauszüge Objekte, wichtige Teilsysteme, Landflächen

 Gliederung:

 nach Objekten mit wichtigen Nebenleistungen (z.B. Land, Baukosten, Honorare).

 Kostenangaben:

 - Kennwerte aus Analysen anderer Projekte (z.B. Fr./m2 Autobahnbrücke, Fr./m3 Bürogebäude)
 - Richtpreise aus kalkulierten Standard-Objekten (z.B. Fr./m Hauptstrassen-Trasse) und ihre projektspezifische Anpassung
 - Durchschnittswert über ganzes Projekt (nur als Kontrollwert, z.B. Fr./m Hauptstrasse im Flachland inkl. Anschlüsse und Kunstbauten).

2. **Kostengrobschätzung** (nach Teilsystemen)

 Leistungsangaben:

 - Vorprojekt (= Generelles Projekt, SN 640 011)
 Struktur und Hauptabmessungen der Objekte, Pläne üblicherweise ca. 1:1000 bis 1:200
 - Mengenauszüge, Teilsysteme sowie wichtige Elemente

 Gliederung:

 nach Objekten und Kontenplan (variable Gliederungstiefe) mit Zusammenstellung nach Objekten und Kostenhauptgruppen

 Kostenangaben:

 - Erfahrungswerte aus Analysen anderer Projekte, Durchschnittswerte für Teilsysteme

3. **Kostenschätzung** (nach Teilsystemen und Elementen)

 wie Kostengrobschätzung aber mit Elementen und nachstehendem Bearbeitungsgrad der Leistungen.

Kostenberechnung (nach Berechnungselementen)

Leistungsangaben:

- Bauprojekt (SN 640 012, Auflagepläne)
- Mengenauszüge, Elemente
 nach Objekten und Kontenplan (z.T. variable Gliederungstiefe), mit Zusammenstellung nach Objekten, Kostenhauptgruppen und Kostengruppen
Kostenangaben:

- Katalog der Berechnungselemente mit zugehörigen NPK-Positionen und Kostenrichtwerten
- eigene Berechnungselemente mit eigenen Erfahrungswerten
- Richtangebote von Unternehmern
- Vergleiche mit vorangehender Kostengrobschätzung
- Durchschnittswerte für Element- und Teilsystem-Einheiten über ganze Projekte (als Kontrollwerte), Risikoanalyse und Überprüfung von Problem-Elementen

4. **Kostenkontrolle** (über Kostenschätzungen bzw. Kostenberechnung)

Grundlagen:

- Kostenziele Bauherr
- Varianten und Änderungen zum Vorprojekt bzw. Bauprojekt (deren Kostenfolgen unter Kontrolle zu halten sind, was aber nicht bedeuten muss, dass ein konstanter Kostenrahmen vorgegeben ist).
- Eingegangene Verpflichtungen und vorhandene Rechnungen und Zahlungen (z.B. Projektierung, evtl. Landkäufe).

Gliederung:

- **gleich** wie bei Schritten 1-3
- sekundäre Hierarchien (Zusammenfassungen) und Vektoren für besondere Zwecke (z.B. Honorarkostenkontrolle, Wirtschaftlichkeitsrechnungen, Verzeichnis der Beauftragten)

Kostenangaben:

- Schätzung bzw. Berechnung der Kostenfolgen von Varianten und Änderungen gleich wie in Schritten 1-3
- Angebote und Verträge (z.B. Projektierende und Berater)
- Rechnungen (Projektierung, Vorinvestitionen etc.)
- Teuerungsindex zum Vergleich von Kosten über verschiedene Zeitpunkte

5. **Kostenvoranschlag** (nach wesentlichen Positionen)

Leistungsangaben:

- Bauprojekt (SN 640 012)
- z.T. Detailbearbeitung, prov. Ausführungspläne
- Leistungsverzeichnis (z.B. aus den Berechnungselementen zusammengestellt, siehe Schritt 3)
- Vorausmass für alle wesentlichen Positionen
Gliederung:

- nach Objekten, Kontenplan und Berechnungselementen (mit Zusammenstellung nach Objekten, Kostenhauptgruppen und Kostengruppen)
- nach dem NPK Bau 2000 (mit Zusammenstellung nach Objekten, Kapiteln und Abschnitten), evtl. nach EKG (Elementkostengliederung)
- Anforderungen an die Schlussabrechnung (z.B. Weisungen Bauherr, SN 640 014)
- sekundäre Hierarchien (Zusammenfassungen) und Vektoren für besondere Zwecke (z.B. Finanzierung, Berechnung Finanzbedarf in Funktion der Zeit)

Kostenangaben:

- "Standard-Positionen" (z.B. aus "Bauhandbuch" CRB bzw. "Richtpreisen Hoch-, Tief- und Untertagbau" SBV) mit entsprechenden Preisaufgaben und ihrer projektspezifischen Anpassung
- eigene Erfahrungswerte über Kosten von Positionen
- Richtofferten von Unternehmern
- Durchschnittswerte für übergeordnete Ebenen, Risikoanalyse und Uberprüfung von Problem-Positionen

6. Leistungsverzeichnis/Angebot/Vertrag (nach Positionen oder anderen Leistungseinheiten)

Leistungsangaben:

- Bereinigtes Bauprojekt (SN 640 013)
- Detailbearbeitung, prov. Ausführungspläne
- Vergabekonzept, Unternehmer- und Lieferantenverzeichnis
- Vorausmass für alle vertraglichen Leistungseinheiten

Gliederung:

- nach Objekten und Kontenplan (mit Zusammenstellung nach Objekten, Hauptkostengruppen und Kostengruppen)
- nach dem NPK Bau 2000 (mit Zusammenstellung nach Objekten, Kapiteln und Abschnitten)
 (Elementgliederung kann einbezogen werden für Bezeichnung der Bauteile, für Mengengerüst bzw. Gliederung der Positions mengen nach Elementen)
- evtl. nach Unternehmern und Lieferanten
 (z.B. Zusammenfassen bzw. Aufteilen von NPK-Kapiteln zu Vergabeinheiten)

Preisangaben:

- Durch Unternehmer angeboten bzw. vertraglich vereinbart

7. Kostenkontrolle (über Kostenvoranschlag bis zur Schlussabrechnung, Schritt 9)

Grundlagen:

- Ausschreibungunterlagen, Angebote und Verträge mit Unternehmern, Lieferanten und weiteren Projektbeteiligten
- Varianten, Aenderungen, Kostenziele Bauherr
- Vergabe von Arbeiten und weitere Verpflichtungen
Gliederung:

- **gleich** wie bei Schritt 5
- sekundäre Hierarchien (Zusammenfassungen) und Vektoren für besondere Zwecke
 (z.B. Finanzierung/Subventionierung: "Kostenteiler", Honorarkostenkontrolle, Mehr-/Minderkostenursachen)

Kostenangaben:

- aktueller Kostenvoranschlag
 (Schritt 5 und laufende Nachführung)
- Berechnung der Kostenfolgen von Varianten und Änderungen gleich wie im Schritt 5
- Angebote und Verträge bzw. Nachträge
- Teuerung
 (z.B. für Vergleich KV-Vergabe)

8. **Kostenkontrolle** (über Verträge bis zur Schlussrechnung)

Grundlagen:

- aktuelle Angebote bzw. Verträge mit entsprechendem Leistungsverzeichnis
 (Schritt 6 und laufende Nachführung)
- Ausführungsprojekt
- Unternehmer- und Lieferantenverzeichnis
- Änderungen und Nachträge zu den Verträgen
- Ausmasse

Gliederung:

- **gleich** wie bei Schritt 6
- sekundäre Hierarchien (Zusammenfassungen) und Vektoren für besondere Zwecke
 (z.B. Finanzbedarfs- und Projektfortschrittsberechnung, Mehr-/Minderkostenursachen, Teuerung, Regie)

Preise:

- gemäß vertraglicher Vereinbarung bzw. durch Unternehmer nachträglich angeboten

9. **Schlussabrechnung** (über Kostenvoranschlag)

Grundlagen:

- Abnahmen
- Ausmasse
- Schlussrechnungen der Unternehmer, Lieferanten und Beauftragten (SN 640 014)
- evtl. Teil-Schlussabrechnungen

Gliederung:

- **gleich** wie Schritte 5 und 7

Kostenangaben bzw. Preise:

- aktueller KV
- gemäß Rechnungen
- Teuerung
10. **Kostenauswertungen** (nach Objekten, Teilsystemen und Elementen)

Grundlagen:
- aktuelle Pläne bzw. Pläne der ausgeführten Bauwerke
- Leistungsverzeichnisse
- erbrachte Leistungen
- Mengenermittlungen

Gliederung:
- **Gleich** wie Schritte 1, 2, 3, 5 und 6
- entsprechend den Katalog-Leistungseinheiten (*Bild 10*), also Objekt-, Teilsystem-, Elementeineinheiten und Normpositionen

Kostenangaben bzw. Preise:
- aktuelle Kostenschätzung oder -berechnung, Kostenvoranschlag, Angebote, Rechnungen, Schlussabrechnung, im Vergleich mit vorangehenden Kostenschätzungen etc.

Obwohl im Ablauf der Projektphasen die verschiedenartigsten Kostendarstellungen gefragt sind, erkennt man doch die **zentrale Bedeutung des Baukosten-Kontenplans**. Wenn ein Projekt in seine Objekte gegliedert ist, können in jeder Phase für jedes Objekt die Kosten nach dem Kontenplan aufgeteilt dargestellt werden. Es ist also möglich, eine **durchgängige** Kostengliederung zu verwenden, was den grossen Vorteil hat, dass eine gute Übersicht während der Projektdauer vorhanden ist und auch keine Umbuchungen von einer Darstellung in eine andere nötig sind.

![Mechanismus der Kontrolle](image-url)
Auf der Basis der Kostenermittlungen (Grobschätzung der Kosten, Kostenschätzung, KV usw.) werden Darstellungen und Zusammenfassungen (Ubersichts) von Baukosten mit variablem Detaillierungsgrad erstellt. Damit wird auch der Tatsache Rechnung getragen, dass die verschiedenen Projektbeteiligten unterschiedliche Anforderungen an solche Kostenübersichten stellen. Dabei reicht das Spektrum von der grössten Baukostensumme bis zu den detailliertesten Aufstellungen.

Die Handhabung aller dieser Kostendarstellungen wird für alle Beteiligten natürlich dann am einfachsten, wenn alle unter der gleichen Gliederung eingeordnet sind. Bedingung dazu ist, dass die Kostengliederung auch wirklich die Bedürfnisse der Beteiligten deckt.

Die praktische Anwendung der Hilfsmittel wird sich nur verbreiten, wenn damit wirtschaftlich gearbeitet werden kann. Eine Bedingung dafür ist, dass die Beschreibung der Leistungen und die Berechnung der Kosten bzw. die Bildung von Erfahrungswerten standardisiert wird.

Im Hochbau bestehen bereits viele Katalog-Leistungseinheiten, und sie werden laufend ausgebaut. Im Tiefbau besteht noch ein beträchtlicher Nachholbedarf.

Grafische Darstellungen der Kostenfestlegung und -entstehung bieten ein anschauliches Bild des Kostenstandes und der Kostenprognosen. Im Bild 37 ist der Mechanismus der Kontrolle bei einer etappenweisen Kostensteuerung gezeigt. Die obere Kurve ist die Trendkurve $V_F(t)$, die angibt, mit welchen Endkosten zum Zeitpunkt t gerechnet wird, mit ihrem Vertrauensbereich angegeben. Die untere Kurve ist die Summenkurve $V(t_i)$, die zeigt, wie der weitere Kostenentstehungsverlauf zum Zeitpunkt t_i vorausgesagt wird. Pro Kostenkonto werden in der Regel mehrere Werte (z.B. aktueller KV, Verträge/Verpflichtungen, Zahlungen, Schlussrechnungen) verfolgt, was im Bild 38 anhand eines grossen, ausgeführten Projekts wiedergegeben wird.

![Diagramm](image)

Bild 38: Kostenkontrolle

Eben wurde auch der Detaillierungsgrad angesprochen, was bedeutet, dass Kostenzusammenstellungen sehr ausführlich oder auch nur grob sein können. Damit solche Darstellungen Vergleiche zulassen, müssen Zusammenfassungen auf jeder Ebene möglich sein. Ueberhaupt sollten Soll-Ist-Vergleiche jederzeit auf aktuellem Stand durchgeführt werden, was natürlich Konsequenzen für die Datenerfassung (z.B. Ausmass) hat. Alle diese Kostendarstellungen oder -gegenüberstellun-

7.2 Erfahrungen aus den Praxistests

Das hauptsächliche Ziel der durchgeführten Praxistests war, zu prüfen, ob die Kosten bei typischen Projekten mit den im Bericht dargestellten Grundsätzen der Kostengliederung in übersichtlicher Form berechnet und dargestellt werden können. Dabei waren auch die Behandlung von Alternativen als Grundlage für Entscheide und die Durchgängigkeit als Voraussetzung für die Steuerung zu beachten.

Die Praxistests führten zu folgenden Ergebnissen

- Die im Bericht dargestellten Grundsätze führten zu praktischen, verwendungsfreundlichen und transparenten Kostenzusammenstellungen auf der Objekt-, Teilsystem- und Elementebene, die sich für die Projektierung, aber auch für die Ausführung und Abrechnung eignen.

Vordergrund stehen sollte. Das hier vorgeschlagene System entspricht dem üblichen Projektierungsvorgehen besser. Es erlaubt jedoch auch eine anschliessende effiziente Erstellung der Leistungsverzeichnisse und die unbeding erforderliche Kostenkontrolle.

Die Ergebnisse dieses Forschungsvorhabens und die entsprechenden Grundlagen, Erfahrungen und Begründungen führen zu folgenden Empfehlungen:

1. **Der Baukosten-Kontenplan (Basisversion '90)** mit seiner Verknüpfung zum NPK Bau 2000 und zur Elementkostengliederung ist mit den Anwendern im Detail zu bereinigen und dann probeweise zur Verwendung freizugeben.

2. **Der NPK Bau 2000** ist für Ausschreibungen zu verwenden. Er ist auszubauen und zu aktualisieren.

3. Die weitere Aufarbeitung und Verbreitung der **Elementmethode** sowie die Entwicklung von "Baukostendaten" für den **Hoch- und Tiefbau** ist mit konkreten Massnahmen zu fördern.

4. Eine **durchgehende Kostenbeherrschung** über den ganzen Projektablauf, unterstützt durch effiziente, moderne Hilfsmittel ist als allgemein anerkannter Stand des Fachgebiets (Sorgfaltspflicht) zu betrachten.

Mit diesen Massnahmen kann ein wesentlicher Beitrag zur einwandfreien, zielgerichteten und kostenbewussten Vorbereitung, Leitung, Planung, Durchführung und Beendigung von Projekten im Hoch- und Tiefbau geleistet werden.

Insgesamt kann bezüglich der Praxistests allerdings erst von einem guten Anfang gesprochen werden, da für einen breiten praktischen Einsatz noch weitere Arbeiten (Berechnungselemente Tiefbau, Software) zu leisten sind.

7.3 Beurteilungen und Empfehlungen

Bei der Beurteilung der Voraussetzungen, Lösungsmöglichkeiten und Ergebnisse standen die folgenden Anforderungen aus der Praxis im Vordergrund:

- Die Vorschläge der CRB/VSS Koordinationsgruppe sind auf recht pragmatische Weise aus der Praxis entwickelt worden. Deshalb war es besonders wichtig, die Problemstellung auch aus der Sicht allgemeiner Gesetzmäßigkeiten zu untersuchen. Einfache, zweckbezogene Grundlagen erleichtern die Arbeit bedeutend, erhöhen die durchschnittliche Qualität der Arbeiten, weil man von einem gewissen Standard ausgehen kann, und können verschiedene Fehler, die bei der Behandlung in Form von Einzelfällen vorkommen, ausschalten.

8. LITERATUR

(1) VSS

(2) Knöpfel, H.

(3) Berger, R.

(4) CRB/VSS

(5) CRB/VSS

(6) SIA

(7) Rosenthaler, Ch.
"Projektänderungen und Teuerung: Zwei kritische Einflüsse auf die Kostenverfolgung", Beitrag zur GPM-Jahrestagung, Bremen, 1985

(8) Dieterle, R.

(9) Reist, A.

(10) Knöpfel, H.

(11) Bourquin, M.

(12) Eggenschwiler, K.
und andere Autoren

(13) Schub, A.
Stark, K.
"Life cycle cost von Bauobjekten - Methoden zur Planung von Erst- und Folgekosten" Verlag TÜV Rheinland, 1985

(14) Diederichs, C.D.

Die Kenntnis der CRB/VSS/SIA/SBV-Arbeitshilfsmittel und -Normen (BKP, EKG bzw. BKA, NPK, "Bauhandbuch", "Baukostendaten", Normen für die Projektierung, LHO, SIA-Norm 118, Kalkulationsschema SBV) wird vorausgesetzt.